Immunobiology of the HIV Envelope and its Relationship to Vaccine Strategies

  • D. P. Bolognesi


One of the many bottlenecks standing before a rational approach to vaccine design against HIV is the lack of epidemiological evidence that immune responses to the virus are able to influence the course of infection or the disease process.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Envelope Glycoprotein Human Immunodeficiency Virus Envelope Human Immunodeficiency Virus Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolognesi DP: Prospects for prevention of and early intervention against HIV. JAMA 1989; 261:3007–3013.PubMedCrossRefGoogle Scholar
  2. Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, Berman P, Gregory T, Capon DJ: Delineation of a region of the human immunodeficiency virus type 1 gpl20 glycoprotein critical for interaction with the CD4 receptor. Cell 1987; 50:975–985.PubMedCrossRefGoogle Scholar
  3. Landau NR, Warton M, Littman DR: The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature 1988; 334:159–162.PubMedCrossRefGoogle Scholar
  4. Sattentau QJ, Dalgleish AG, Weiss RA, Beverley PCL: Epitopes of the CD4 antigen and HIV infection. Science 1986; 234:1120–1123.PubMedCrossRefGoogle Scholar
  5. Smith DH, Byan RA, Marsters SA, Gregory T, Groopman JE, Capon DJ: Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 1988; 238:1704.CrossRefGoogle Scholar
  6. Matthews TJ, Weinhold KJ, Lyerly HK, Langlois AJ, Wigzell J, Bolognesi DP: Interaction between the human T-cell lymphotropic virus type IIIB envelope glycoprotein gpl20 and the surface antigen CD4: Role of carbohydrate in binding and cell fusion. Proc Natl Acad Sci USA 1987; 84:5424–5428.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Kowalski M, Potz J, Basiripour L, Dorfman T, Goh WC, Terwilliger E, Dayton A, Rosen C, Haseltine W, Sodroski J: Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 1987; 237:1351–1355.PubMedCrossRefGoogle Scholar
  8. Gallaher WR: Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 1987; 50:327–328.PubMedCrossRefGoogle Scholar
  9. Hildreth JEK, Orentas RJ: Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science 1989; 244:1075–1078.PubMedCrossRefGoogle Scholar
  10. Skinner MA, Langlois AJ, McDanal CB, Bolognesi DP, Matthews TJ: Serum from HIV infected humans prevents gpl20 binding to CD4 and this activity is not elicited in animals immunized with envelope protein components. J Virol 1988: 62:4195–4200.PubMedCentralPubMedGoogle Scholar
  11. Dalgleish AG, Chanh TC, Kennedy RC, Kanda P, Clapham PR, Weiss RA: Neutralization of diverse HIV-1 strains by monoclonal antibodies raised against a gp41 synthetic peptide. Virol 1988; 165:209–215.CrossRefGoogle Scholar
  12. Evans DJ, McKeating J, Meredith JM, Burke KL, Katrak K, John A, Ferguson M, Minor PD, Weiss RA, Almond JW: An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature 1989; 339:385–388.PubMedCrossRefGoogle Scholar
  13. Cease KB, Margalit H, Cornette JL, Putney SD, Robey WG, Ouyang C, Streicher HZ, Fischinger PJ, Gallo RC, DeLisi C, Berzofsky JA: Helper T-cell antigenic site identification in the acquired immunodeficiency syndrome virus gpl20 envelope protein and induction of immunity in mice to the native protein using a 16-residue synthetic peptide. Proc Natl Acad Sci USA 1987; 84:4249–4253.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Takahashi H, Cohen J, Hosmalin A, Cease KB, Houghten R, Cornette JL, DeLisi C, Moss B, Germain RN, Berzofsky JA: An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gpl60 recognized by class I major histocompatibility complex molecule-restricted murine cytotoxic T lymphocytes. Proc Natl Acad Sci USA 1988; 85:3105–3109.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Siliciano RF, Lawton T, Knall C, Karr RW, Berman P, Gregory T, Reinherz EL: Analysis of host-virus interactions in AIDS with anti-gpl20 T cell clones: Effect of HIV sequence variation and a mechanism for CD4+ cell depletion. Cell 1988; 54:561–575.PubMedCrossRefGoogle Scholar
  16. Schrier RD, Gnann JW, Langlois AJ, Shriver K, Nelson JA, Oldstone MBA: B and T lymphocyte responses to an immunodominant epitope of human immunodeficiency virus. J Virol 1988; 62:2531–2536.PubMedCentralPubMedGoogle Scholar
  17. Ahearne PM, Matthews TJ, Lyerly HK, White GC, Bolognesi DP, Weinhold KJ: Cellular immune response to viral peptides in patients exposed to HIV. AIDS Res and Hum Retro 1988; 4:259–267.CrossRefGoogle Scholar
  18. Clerici M, Stocks NI, Zajac RA, Boswell RN, Bernstein DC, Mann DL, Shearer GM, Berzofsky JA: Interleukin-2 production used to detect antigenic peptide recognition by T-helper lymphocytes from asymptomatic HIV-sero-positive individuals. Nature 1989; 339:383–385.PubMedCrossRefGoogle Scholar
  19. Lyerly HK, Matthews TJ, Langlois AJ, Bolognesi DP, Weinhold KJ: Human T-cell lymphotropic virus HIB glycoprotein (gpl20) bound to CD4 determinants on normal lymphocytes and expressed by infected ceils serves as target for immune attack. Proc Natl Acad Sci USA 1987; 84:4601–4605.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Gorny MK, Gianakakos V, Shaipe S, Zolla-Pazner S: Generation of human monoclonal antibodies to human immunodeficiency virus. Proc Natl Acad Sci USA 1989; 86:1624–1628.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Oldstone MBA: Molecular mimicry and autoimmune disease. Cell 1987; 50:819–820.PubMedCrossRefGoogle Scholar
  22. Reiher WE, Blalock JE, Brunck TK: Sequence homology between acquired immunodeficiency syndrome virus envelope protein and interleukin 2. Proc Natl Acad Sci USA 1986; 83:9188–9192.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Golding H, Robey FA, Gates FT, Linder W, Beining PR, Hoffman T, Golding B: Identification of homologous regions in human immunodeficiency virus I gp41 and human MHC class II domain. J of Exper Med 1988; 167:914–923.CrossRefGoogle Scholar
  24. Ho DD, Li XL, Moudgil T, Alam M: HIV envelope domains important for antibody neutralization. In: Retroviruses of Human AIDS and Related Animal Diseases 1988; pp.155–158.Google Scholar
  25. Lee MR, Ho DD, Gurney ME: Functional interaction and partial homology between human immunodeficiency virus and neuroleukin. Science 237:1047–1051.Google Scholar
  26. Kowalski M, Ardman B, Basiripour L, Lu Y, Blohm D, Haseltine W, Sodroski J: Antibodies to CD4 in individuals infected with human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1989; 86:3346–3350.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Weinhold KJ, Lyerly HK, Stanley SD, Austin AA, Matthews TJ, Bolognesi DP: HIV-1 gpl20-mediated immune suppression and lymphocyte destruction in the absence of viral infection. J Immuno 1989; 142:3091–3097.Google Scholar
  28. Clayton LK, Sieh M, Pious DA, Reinherz EL: Identification of human CD4 residues affecting class II MNC versus HIV-1 gpl20 binding. Nature 1989; 339:548–551.PubMedCrossRefGoogle Scholar
  29. Cianciolo GJ, Copeland TD, Oroszlan S, Snyderman RL: Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Proc Natl Acad Sci USA 1985; 230:453–455.Google Scholar
  30. Klasse PJ, Pipkorn R, Blomberg J: Presence of antibodies to a putatively immunosuppressive part of human immunodeficiency virus (HIV) envelope glycoprotein gp41 is strongly associated with health among HIV-positive subjects. Proc Natl Acad Sci USA 1988; 85:5225–5229.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Takeda A, Tuazon CU, Ennis FA: Antibody-enhanced infection by HIV-1 via Fc receptor-mediated entry. Science 1988; 242:580–583.PubMedCrossRefGoogle Scholar
  32. Homsy J, Meyer M, Tateno M, Clarkson S, Levy JA: The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science 1989; 244:1357–1360.PubMedCrossRefGoogle Scholar
  33. Robinson Jr. WE, Montefiori DC, Mitchell WM: Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet (April) 1988; 790–794.Google Scholar
  34. Nixon DF, Townsend ARM, Elvin JG, Rizza CR, Gallwey J, McMichael AJ: HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccina virus and synthetic peptides. Nature 1988; 336:484–487.PubMedCrossRefGoogle Scholar
  35. Walker BD, Flexner C, Paradis TJ, Fuller TC, Hirsch MS, Schooley RT, Moss B: HIV-1 reverse transcriptase is a target for cytotoxic T lymphocytes in infected individuals. Science 1988; 240:64–66.PubMedCrossRefGoogle Scholar
  36. Riviere Y, Tanneau-Salvadori F, Regnault A, Lopez O, Sansonetti P, Guy B, Kieny MP, Fournel JJ, Montagnier L: Human immunodeficiency virus-specific cytotoxic responses of seropositive individuals: Distinct types of effector cells mediate killing of targets expressing gag and env proteins. J Virol 1989; 63:2270–2277.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • D. P. Bolognesi

There are no affiliations available

Personalised recommendations