Advertisement

Steady, Structured Shock Waves. Part 1: Thermoelastic Materials

  • J. E. Dunn
  • R. L. Fosdick

Abstract

One dimensional plane shock waves have been widely used to study the mechanical response of solids to high velocity impact. For many materials, under a certain range of impact pressures, a two-wave structure arises, the first wave of which, the so-called elastic precursor, travels at a velocity near to the speed of sound, while the second wave, often called a plastic shock wave, travels at a slower speed which increases with impact pressure. While the full two-wave structure is thus not steady (does not propagate without change of form), each component wave may be treated as steady after having propagated sufficiently far. As indicated by the experimental data presented in Figure 1, in some materials the elastic precursor is generally much steeper than the plastic shock wave. Indeed, for some materials, the elastic precursor is infinitely steep to within current techniques of data resolution. Accordingly, it is usually modelled as a singular surface. The plastic shock, however, typically exhibits a smooth variation, albeit still highly localized in time and space. Thus, these shocks are structured, and a central question for constitutive modelling concerns those aspects of material response that can serve as structuring agencies in the shock‡.

Keywords

Shock Wave Deformation Gradient Shock Velocity Shock Speed Structure Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rice, M. H., R. G. Mcqueen, and J. M. Walsh, Compression of Solids by Strong Shock Waves, in: Solid State Physics, 6, 1–63, ed. F. Seitz and D. Turnbull, Academic Press, New York and London, 1958.Google Scholar
  2. 2.
    Mcqueen, R. G., S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, The Equation of State of Solids from Shock Wave Studies, in: High-Velocity Impact Phenomena, 294–417, ed. R. Kinslow, Academic Press, New York and London, 1970.Google Scholar
  3. 3.
    Johnson, J. N., and L. M. Barker, Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum. Jour. Appl. Phys. 40, 4321–4334 (1969).CrossRefADSGoogle Scholar
  4. 4.
    Barker, L. M., Fine Structure of Compression and Release Wave Shapes in Aluminum Measured by the Velocity Interferometer Technique, in: Behavior of Dense Media under High Dynamic Pressure, 483–504, Gordon and Breach, New York, 1968.Google Scholar
  5. 5.
    Grady, D. E., Strain rate dependence of the effective viscosity under steady wave shock compression. Appl. Phys. Lett. 38, 825–826 (1981).CrossRefADSGoogle Scholar
  6. 6.
    Swegle, J. W., and D. E. Grady, Shock viscosity and the prediction of shock wave risetimes. J. Appl. Phys. 58, 692–701 (1985).CrossRefADSGoogle Scholar
  7. 7.
    Dunn, J. E., and D. E. Grady, Strain Rate Dependence in Steady Plastic Shock Waves, in: Shock Waves in Condensed Matter, 359–364, ed. Y. M. Gupta, Plenum Press, New York, 1986.Google Scholar
  8. 8.
    Dunn, J. E., The Evolution of Plastic Strain in Steady, Plastic Shock Waves, in: Shock Waves in Condensed Matter-1987, 211–214, ed. S. C. Schmidt and N. C. Holmes, North-Holland, Amsterdam, 1987.Google Scholar
  9. 9.
    Gilbarg, D., and D. Paolucci, The structure of shock waves in the continuum theory of fluids. J. Rational Mech. Anal. 2, 617–642 (1953).MATHMathSciNetGoogle Scholar
  10. 10.
    Grad, H., The profile of a steady plane shock wave. Comm. Pure Appl. Math. 5, 257–300 (1952).MATHMathSciNetGoogle Scholar
  11. 11.
    Band, W., Studies in the theory of shock propagation in solids. J. Geophys. Res. 65, 695–719 (1960).CrossRefADSGoogle Scholar
  12. 12.
    Bethe, H. A., The Theory of Shock Waves for an Arbitrary Equation of State. Office of Scientific Research and Development, Report No. 545 (1942).Google Scholar
  13. 13.
    Weyl, H., Shock waves in arbitrary fluids. Comm. Pure Appl. Math. 2, 103–122 (1949).MATHMathSciNetGoogle Scholar
  14. 14.
    Courant, R., and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York and London, 1948.MATHGoogle Scholar
  15. 15.
    Serrin, J., Mathematical Principles of Classical Fluid Dynamics. Flügge’s Handbuch der Physik, VIII/1, Springer, Berlin-Heidelberg-New York, 1957.Google Scholar
  16. 16.
    Dunn, J. E., and R. Fosdick, A Dissipation Principle and Its Consequences for Structured Shock Waves in Thermoelastic Materials, in: Shock Waves in Condensed Matter-1987, 215–218, ed. S. C. Schmidt and N. C. Holmes, North-Holland, Amsterdam, 1987.Google Scholar
  17. 17.
    Hagan, R., and J. Serrin, One-Dimensional Shock Layers in Korteweg Fluids, in: Phase Transformations and Material Instabilities in Solids, 113–127, ed. M. E. Gurtin, Academic Press, New York and London, 1984.Google Scholar
  18. 18.
    Rayleigh, J., Aerial plane waves of finite amplitude. Proc. Royal Soc. London Series A, 84, 247–284 (1910).CrossRefMATHADSGoogle Scholar
  19. 19.
    Rankine, W. J. M., On the thermodynamic theory of waves of finite longitudinal disturbance. Trans. Royal Soc. London 160, 277–288 (1870).Google Scholar
  20. 20.
    Earnshaw, the REV. S., On the mathematical theory of sound. Trans. Royal Soc. London 150, 133–148 (1860).Google Scholar
  21. 21.
    Jouguet, E., Sur la propagation des discontinuitiés dans les fluides. C. R. Acad. Sci. Paris 132, 673–676 (1901).MATHGoogle Scholar
  22. 22.
    Jouguet, E., Remarques sur la propagation des percussions dans les gaz. C. R. Acad. Sci. Paris 138, 1685–1688 (1904).Google Scholar
  23. 23.
    Zemplén, G., Sur l’impossibilité des ondes choc négative dans les gaz. C. R. Acad. Sci. Paris 141, 710–712 (1905).Google Scholar
  24. 24.
    Hadamard, J., Remarque sur la note de M. Gyözö Zemplén. C. R. Acad. Sci. Paris 141, 713 (1905).Google Scholar
  25. 25.
    Kormer, S. B., A. I. Funtikov, V. D. Urlin, and A. N. Kolesnikova, Dynamic compression of porous metals and the equation of state with variable specific heat at high temperatures. Soviet Phys. JETP 15, 477–488 (1962).Google Scholar
  26. 26.
    Nellis, W. J., N. C. Holmes, A. C. Mitchell, and M. Van Thiel, Phase transition in fluid nitrogen at high densities and temperatures. Phys. Rev. Lett. 53, 1661–1664 (1984).CrossRefADSGoogle Scholar
  27. 27.
    Radousky, H. B., W. J. Nellis, M. Ross, D. C. Hamilton, and A. C. Mitchell, Molecular dissociation and shock-induced cooling in fluid nitrogen at high densities and temperatures. Phys. Rev. Lett. 57, 2419–2422 (1986).CrossRefADSGoogle Scholar
  28. 28.
    Landau, L. D., and E. M. Lifschitz, Fluid Mechanics. Pergamon Press, Oxford and New York, 1959.Google Scholar
  29. 29.
    Zel’dovich, Y. B., and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1 and 2. Academic Press, New York and London, 1967.Google Scholar
  30. 30.
    Serrin, J., and Y. C. Whang, On the entropy change through a shock layer. J. Aerospace Sci. 28, No. 12 (1961).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. E. Dunn
    • 1
    • 2
  • R. L. Fosdick
    • 1
    • 2
  1. 1.Solid Dynamics DepartmentSandia National LaboratoriesAlbuquerqueUSA
  2. 2.Department of Aerospace Engineering and MechanicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations