Skip to main content

The Uniqueness of Hill’s Spherical Vortex

  • Chapter
Analysis and Continuum Mechanics
  • 551 Accesses

Abstract

The mathematical description of steady vortex rings, in an ideal fluid occupying the whole space R3, can be approached in various ways. The physical basis of the problem, its history up to 1973, and several formulations are outlined in [12], pp. 14–21. Another, quite different formulation and the plan for a corresponding existence theory are presented in [6]. Further existence theorems, variational principles and results are to be found in [3], [7], [11], [13] and [20]. Here we state only definitions and equations that seem relevant to our immediate purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, S., The Li, approach to the Dirichlet problem. Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 405–448.

    Google Scholar 

  2. Agmon, S., Douglis, A., & Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12 (1959), 623–727.

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosetti, A., & Mancini, G., On some free boundary problems. In Recent contributions to nonlinear partial differential equations (edited by H. Berestycki & H. Brézis ). Pitman, 1981.

    Google Scholar 

  4. Amick, C. J., & Fraenkel, L. E., The uniqueness of Norbury’s perturbation of Hill’s spherical vortex. To appear.

    Google Scholar 

  5. Amick, C. J., & Fraenkel, L. E., Note on the equivalence of two variational principles for certain steady vortex rings. To appear.

    Google Scholar 

  6. Benjamin, T. B., The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics. In Applications of methods of functional analysis to problems of mechanics, Lecture notes in math. 503. Springer, 1976.

    Google Scholar 

  7. Berestycki, H., Some free boundary problems in plasma physics and fluid mechanics. In Applications of nonlinear analysis in the physical sciences (edited by H. Amann, N. Bazley & K. Kirchgässner). Pitman, 1981.

    Google Scholar 

  8. Caffarelli, L. A., & Friedman, A., Asymptotic estimates for the plasma problem. Duke Math. J. 47 (1980), 705–742.

    Article  MATH  MathSciNet  Google Scholar 

  9. Chandrasekhar, S., Hydrodynamic and hydromagnetic stability. Oxford, 1961.

    Google Scholar 

  10. Ekeland, I., & Temam, R., Convex analysis and variational problems. North-Holland, 1976.

    Google Scholar 

  11. Esteban, M. J., Nonlinear elliptic problems in strip-like domains: symmetry of positive vortex rings. Nonlinear Analysis, Theory, Methods and Applications 7 (1983), 365–379.

    MATH  MathSciNet  Google Scholar 

  12. Fraenkel, L. E., & Berger, M. S., A global theory of steady vortex rings in an ideal fluid. Acta Math. 132 (1974), 13–51.

    Article  MATH  MathSciNet  Google Scholar 

  13. Friedman, A., & Turkington, B., Vortex rings: existence and asymptotic estimates. Trans. Amer. Math. Soc. 268 (1981), 1–37.

    Article  MATH  MathSciNet  Google Scholar 

  14. Gidas, B., Ni, W.-M., & Nirenberg, L., Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209–243.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Gilbarg, D., & Trudinger, N. S., Elliptical partial differential equations of second order. Springer, 1977.

    Google Scholar 

  16. Giles, J. R., Convex analysis with application in differentiation of convex functions. Pitman, 1982.

    Google Scholar 

  17. Hill, M. J. M., On a spherical vortex. Philos. Trans. Roy. Soc. London A 185 (1894), 213–245.

    Article  MATH  ADS  Google Scholar 

  18. Keady, G., & Kloeden, P. E., Maximum principles and an application to an elliptic boundary-value problem with a discontinuous nonlinearity. Research report, Dept. of Math., University of Western Australia, 1984.

    Google Scholar 

  19. Kinderlehrer, D., & Stampacchia, G., An introduction to variational inequalities and their applications. Academic Press, 1980.

    Google Scholar 

  20. Ni, W.-M., On the existence of global vortex rings. J. d’Analyse Math. 37 (1980), 208–247.

    Article  MATH  Google Scholar 

  21. Nirenberg, L., On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115–162.

    MathSciNet  Google Scholar 

  22. Norbury, J., A steady vortex ring close to Hill’s spherical vortex. Proc. Cambridge Philos. Soc. 72 (1972), 253–284.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Norbury, J., A family of steady vortex rings. J. Fluid Mech. 57 (1973), 417–431.

    Article  MATH  ADS  Google Scholar 

  24. Serrin, J., A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971), 304–318.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to James Serrin on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amick, C.J., Fraenkel, L.E. (1989). The Uniqueness of Hill’s Spherical Vortex. In: Analysis and Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83743-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83743-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50917-2

  • Online ISBN: 978-3-642-83743-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics