Image Segregation by Motion : Cortical Mechanisms and Implementation in Neural Networks

  • G. A. Orban
  • B. Gulyás
Conference paper
Part of the Springer Study Edition book series (volume 41)


The experimental evidence suggesting that at an early visual cortical level neurones signal differences in speed or direction of motion is reviewed. The functional significance of these findings is examined from the point of view of higher processing in visual parallel networks. We suggest that elementary visual parameters are processed in a dual way, in a ‘discontinuity’ and in a ‘continuous’ stream and that the power of ‘visual routines’ is due in part to the interplay between these two streams.


Lateral Geniculate Nucleus Direction Selectivity Texture Background Background Motion Visual Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allman, J., Miezin, F. and McGuinness, E.: Direction-and velocity-specific responses from beyond the classical receptive field in the middle temporal area (MT). Perception 14, 105–126, (1985)CrossRefGoogle Scholar
  2. 2.
    Frost, B.J. and Nakayama, K.: Single visual neurons code opposing motion independent of direction. Science 220, 744–745 (1983)CrossRefGoogle Scholar
  3. 3.
    Grossberg, S.: Cortical dynamics of three-dimensional form, color, and brightness perception : I. Monocular theory. Percept. & Psychoph. 41, 87–116 (1987)CrossRefGoogle Scholar
  4. 4.
    Gulyás, B., Orban, G.A., Duysens, J. and Maes, H.: The suppressive influence of moving textured background on responses of cat striate neurons to moving bars. J. Neurophysiol. 57, 1767–1791 (1987a)Google Scholar
  5. 5.
    Hawken, M.J., Parker, A.J. and Lund, J.S.: Contrast sensitivity and laminar distribution of direction sensitive neurons in monkey striate cortex. Suppl. Invest. Ophthalmol. Vis. Sci. 28, 197 (1987)Google Scholar
  6. 6.
    Koch, C. and Ullman S.: Shifts in selective visual attention : towards the underlying neural circuitry. Human Neurobiol. 4, 219–227 (1985)Google Scholar
  7. 7.
    Livingstone, M.S. and Hubel, D.H.: Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–339 (1984)Google Scholar
  8. 8.
    Marr, D.: Vision. W.H. Freeman and Co., San Francisco (1982)Google Scholar
  9. 9.
    Marroquin, J.L.: Surface reconstruction preserving discontinuities. A.I. Memo 792, 1–24 (1984)Google Scholar
  10. 10.
    Movshon, J.A., Adelson, E.H., Gizzi, M.S. and Newsome, W.T.: The analysis of moving visual patterns. In : Pattern Recognition Mechanisms. C. Chagas, R. Gattass & C. Gross (Eds.). Exp. Brain Res. Suppl. 11. New York : Springer-Verlag, p. 117–151 (1985)Google Scholar
  11. 11.
    Nothdurft, H.C.: Orientation sensitivity and texture segmentation in patterns with different line orientation. Vision Res. 25, 551–560 (1985)CrossRefGoogle Scholar
  12. 12.
    Orban, G.A., Gulyás, B. and Spileers, W.: A moving noise background modulates responses to moving bars of monkey V2 cells but not of monkey VI cells. Suppl. Invest. Ophthalmol. Vis. Sci. 28, 197 (1987a)Google Scholar
  13. 13.
    Orban, G.A., Gulyás, B. and Spileers, W.: Influence of moving textured backgrounds on responses of cat area 18 cells to moving bars. Progr. Brain Res. in press (1988)Google Scholar
  14. 14.
    Orban, G.A., Gulyás, B. and Vogels, R.: Influence of a moving textured background on direction selectivity of cat striate neurons. J. Neurophysiol. 57 ,1792–1812 (1987b)Google Scholar
  15. 15.
    Orban, G.A., Kennedy, H. and Bullier, J.: Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey : influence of eccentricity. J. Neurophysiol. 56, 462–480 (1986)Google Scholar
  16. 16.
    Orban, G.A., Vandenbussche, E. and Vogels, R.: Human orientation discrimination tested with long stimuli. Vision Res. 24, 121–128 (1984)CrossRefGoogle Scholar
  17. 17.
    Treisman, A.: Perceptual grouping and attention in visual search for features and for objects. J. exp. Psychol. : Human Perception and Performance, 8, 194–214 (1982)CrossRefGoogle Scholar
  18. 18.
    Treisman, A. and Gelade, G.: A feature-integration theory of attention. Cog. Psychol. 12, 97–136’(1980)CrossRefGoogle Scholar
  19. 19.
    Uliman, S.: Visual Routines. Cognition 18, 97–159 (1984)CrossRefGoogle Scholar
  20. 20.
    van Doorn, A.J. and Koenderink, J.J.: Detectability of velocity gradients in moving random dot patterns. Vision Res. 23, 799–804 (1983)CrossRefGoogle Scholar
  21. 21.
    Van Hulle, M.M. and Orban, G.A.: Entropy driven artificial neuronal networks and sensorial representation : a proposal. Special issue on ’Neural Computers’ of the Journal of Parallel and Distributed Computation. submitted(1988)Google Scholar
  22. 22.
    von Grünau, M. and Frost, B.J.: Double-opponent-process mechanism underlying RF-structure of directionally specific cells of cat lateral suprasylvian visual area. Exp. Brain Res. 49, 84–92 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • G. A. Orban
    • 1
  • B. Gulyás
    • 1
  1. 1.Laboratorium voor Neuro- en PsychofysiologieKatholieke Universiteit te LeuvenLeuvenBelgium

Personalised recommendations