Skip to main content

Re-Evaluation of Starling Forces Balance and Lymphatic Clearance in the Lung

  • Conference paper
Update 1989

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 8))

  • 182 Accesses

Abstract

It is generally accepted that transvascular fluid flux (QF) across the pulmonary microvasculature is governed by the forces summarized in Starling’s equation [1, 2]:

$$ {Q_F} = {K_F}\left[ {\left( {{P_{{mv}}} - {P_{{pmv}}}} \right)\sigma \left( {{\pi_{{mv}}} = {\pi_{{pmv}}}} \right)} \right] $$
(1)

where, as proposed by Staub, Pmv and πmv represent the microvascular, and Ppmv and πpmv the perimicrovascular hydrostatic and colloid osmotic pressures, respectively [3]. The proportionality constant KF is commonly known as the filtration coefficient and represents the microvascular conductance to transvascular fluid exchange for any imbalance of forces. Because the normal pulmonary microvascular membrane allows for some protein exchange, the transvascular osmotic gradient is corrected accordingly with the use of the reflection coefficient (a). The Starling equation is a linear relationship, and predicts that, unless there is complete balance among the forces, QF must occur at a rate proportional to the force imbalance. Yet, since the classic experiments of Guyton and Lindsay, it is known that Pmv can vary over a wide range without net fluid accumulation in the lung [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Starling EH (1896) On absorption of fluid from the connective tissue spaces. J Physiol (London) 19:312–326

    CAS  Google Scholar 

  2. Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non electrolytes. Biochim Biophys Acta 27:229–246

    Article  PubMed  CAS  Google Scholar 

  3. Staub NC (1974) Pulmonary edema. Physiol Rev 54:678–811

    Article  PubMed  CAS  Google Scholar 

  4. Guyton AC, Lindsey AE (1959) Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ Res 7:649–657

    PubMed  CAS  Google Scholar 

  5. Gaar KA, Taylor AE, Owens LJ, Guyton AC (1967) Effect of capillary pressure and plasma protein on the development of pulmonary edema. Am J Physiol 231:79–82

    Google Scholar 

  6. Drake RE, Garr KA, Taylor AE (1978) Estimation of the filtration coefficient of pulmonary exchange vessel. Am J Physiol 234 (Heart Circ Physiol 3):H266–H274

    PubMed  CAS  Google Scholar 

  7. Goldberg HS (1980) Pulmonary interstitial compliance and microvascular filtration coefficient. Am J Physiol 239 (Heart Circ Physiol 8):H189–H198

    PubMed  CAS  Google Scholar 

  8. Lai-Fook SJ, Toporoff B (1980) Pressure-volume behavior of perivascular interstitium measured in isolated dog lung. J Appl Physiol 48:939–946

    PubMed  CAS  Google Scholar 

  9. Parker JC, Guyton AC, Taylor AE (1978) Pulmonary interstitial and capillary pressures estimated from intra-alveolar fluid pressures. J Appl Physiol 44:267–276

    PubMed  CAS  Google Scholar 

  10. Taylor AE, Parker JC (1984) Pulmonary interstitial spaces and lymphatics, In: Handbook of physiology, sect 3, vol 1, Chap 4. Respiration. Washington DC, American Physiologic Society, pp 167–230

    Google Scholar 

  11. Drake RE, Smith JH, Gabel JC (1980) Estimation of the filtration coefficient in intact dog lungs. Am J Physiol (Heart Circ Physiol 7):H430–H438

    Google Scholar 

  12. Parker JC, Falgout HJ, Grimbert FA, Taylor AE (1980) The effect of increased vascular pressure on albumin excluded volume and lymph flow in the dog lung. Circ Res 47:866–875

    PubMed  CAS  Google Scholar 

  13. Guyton AC, Taylor AE, Drake RE, Parker JC (1976) Dynamics of subatmospheric pressure in the pulmonary intestitial fluid. In: Lung liquids. Amsterdam: Excerpta Med, pp 77–100 (Ciba Found Symp 38)

    Google Scholar 

  14. Staub NC (1978) Pulmonary edema. Physiologic approaches to management. Chest 74:559–564

    Article  PubMed  CAS  Google Scholar 

  15. Snashall PD, Nakahara K, Staub NC (1980) Estimation of perivascular fluid pressure in isolated perfused dog lung lobes. J Appl Physiol 46:547–551

    Google Scholar 

  16. Oppenheimer L, Richardson WN, Bilan D, Hoppensach M (1987) Colorimetric device for measurement of transvascular fluid flux in blood-perfused organs. J Appl Physiol 62:364–372

    PubMed  CAS  Google Scholar 

  17. Richardson WN, Bilan D, Hoppensack M, Oppenheimer L (1987) Fast-phase transvascular fluid flux and the Fahraeus effect. J Appl Physiol 62:1513–1520

    PubMed  CAS  Google Scholar 

  18. Mink SN, Unruh HW, Oppenheimer L (1985) Vascular and interstitial mechanics in canine pulmonary emphysema. J Appl Physiol 59:1704–1715

    PubMed  CAS  Google Scholar 

  19. Kostuk W, Barr JW, Simon AL, Ross J Jr (1979) Correlations between chest film and hemodynamics in acute myocardial infarction. Circulation 48:624–632

    Google Scholar 

  20. Meyers I, Stimpson R, Oppenheimer L (1987) Delayed resolution of high-pressure pulmonary edema or capillary leak. Surgery 101:450–458

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oppenheimer, L. (1989). Re-Evaluation of Starling Forces Balance and Lymphatic Clearance in the Lung. In: Vincent, J.L. (eds) Update 1989. Update in Intensive Care and Emergency Medicine, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83737-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83737-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50879-3

  • Online ISBN: 978-3-642-83737-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics