The Finite Element Method in Viscous Incompressible Flows

  • Philip M. Gresho
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 43)

Abstract

My “assignment” from the conference organizers was to prepare an overview and/or tutorial lecture on the subject in the title. I chose to emphasize “tutorial” and in a way that I believe is useful; i.e., it is not a survey of the field nor of its historical development.

Keywords

Vortex Convection Assure Vorticity Advection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfrink, B. (1981), “On the Newmann Problem for the Pressure in a Navier-Stokes Model,” in Proceedings of the Second International Conference on Numerical Methods in Laminar and Turbulent Flow, Pineridge Press Ltd., Swansea, U.K., p. 389.Google Scholar
  2. Boland, J. M. and R. A. Nicolaides (1984), “Stability of Finite Elements under Divergence Constraints,” SIAM J. Num. Anal., 20 (4), p. 722.CrossRefMathSciNetGoogle Scholar
  3. Brown, P. and A. Hindmarsh (1987), “Reduced Storage Matrix Methods in Stiff ODE Systems,” Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL95088, Rev. 1.Google Scholar
  4. Chan, S. T. (1988), “FEM3A: A Finite Element Model for the Simulation of Gas Transport and Dispersion: User’s Manual,” Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-21043.Google Scholar
  5. Chan, S., H. Rodean, and D. Ermak (1984), “Numerical Simulations of Atmospheric Releases of Heavy Gases over Variable Terrain,” Air Pollution Modeling and Its Application III, Plunum Press, p. 295–341; also Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-87256 (1982).Google Scholar
  6. Chan, S., D. Ermak, and L. Morris (1987), “FEM3 Model Simulations of Selected Thorney Island Phase I Trials,” J. Hazardous Materials, 16, p. 267–292.CrossRefGoogle Scholar
  7. Chorin, A. (1968), “Numerical Solution of the Navier-Stokes Equations,” Math. Comput., 22, p. 745–762.CrossRefMathSciNetMATHGoogle Scholar
  8. Chorin, A. (1969), “On the Convergence of Discrete Approximations to the Navier-Stokes Equations,” Math. of Comp., 23 (106), p. 341.CrossRefMathSciNetMATHGoogle Scholar
  9. Cuvelier, C., A. Segal, and A. van Steenhoven (1986), Finite Element Methods and NavierStokes Equations, D. Reidel, Dordrecht, Netherlands.Google Scholar
  10. Engelman, M. and R. Sani (1983), “Finite-Element Simulation of an In-Package Pasteurization Process,” Num. Heat Transfer, 8, 41–54.ADSGoogle Scholar
  11. Engelman, M., R. Sani, P. Gresho, and M. Bercovier (1982), “Consistent vs. Reduced Integration Penalty Methods for Incompressible Media Using Several Old and New Elements,” Int. J. Num. Meth. Fl., 2 (1), p. 25–42.CrossRefMathSciNetMATHGoogle Scholar
  12. FIDAP Theoretical Manual, Version 4.0,“ Fluid Dynamics International, 1600 Orrington Avenue, Ste. 400, Evanston, Ill 60201 (September 1987).Google Scholar
  13. Fortin, M. (1983), “Two Comments on: Consistent vs. Reduced Integration Penalty Methods for Incompressible Media Using Several Old and New Elements,” Int. J. Num. Meth. Fl., 3, p. 93.CrossRefMathSciNetMATHGoogle Scholar
  14. Ghia, K., W. Hanky, and J. Hodge (1979), “Use of Primitive Variables in the Solution of Incompressible Navier-Stokes Equations,” AIAA J., 17 (3), p. 298.CrossRefADSMATHGoogle Scholar
  15. Glowinski, R. (1984), Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, NY.Google Scholar
  16. Gresho, P. (1985), “Contribution to von Karman Institute Lecture Series on ‘Computational Fluid Dynamics’: Advection-Diffusion and Navier-Stokes Equations,” Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-92275.Google Scholar
  17. Gresho, P. (1985), “A Modified Finite Element Method for Solving the Incompressible Navier-Stokes Equations,” Large-Scale Computations in Fluid Mechanics; Vol. 22, Part 1: Lectures in Applied Mathematics, Americal Mathematical Society, Providence, RI, p. 193.Google Scholar
  18. Gresho, P. (1985), “Solution of the Time-Dependent, Incompressible Navier-Stokes Equations via a Modified Finite Element Method,” Latin Am. J. Heat and Mass Transfer, 8 (3–4), p. 237–286.Google Scholar
  19. Gresho, P. (1986), “Time Integration and Conjugate Gradient Methods for the Incompressible Navier-Stokes Equations,” Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-94000.Google Scholar
  20. Gresho, P. and S. Chan (1985), “A New Semi-implicit Method for Solving the Time-Dependent Conservation Equations for Incompressible Flow,” Numerical Methods in Laminar and Turbulent Flow, Pineridge Press Ltd., Swansea, U.K., p. 3–21.Google Scholar
  21. Gresho, P. and S. Chan (1988), “Solving the Incompressible Navier-Stokes Equations using Consistent Mass and the Pressure Poisson Equation,” ASME Symposium on Recent Developments in Computational Fluid Dynamics, 28 November-2 December 1988, Chicago, IL.Google Scholar
  22. Gresho, P. and R. Lee (1981), “Don’t Suppress the Wiggles—They’re Telling You Something!” Comp. and Fluids, 9 (2), p. 223–255.CrossRefMathSciNetGoogle Scholar
  23. Gresho, P. and R. Sani (1987), “On Pressure Boundary Conditions for the Incompressible Navier-Stokes Equations,” Int. J. Num. Meth. Fl., 7, p. 1111–1145.CrossRefMATHGoogle Scholar
  24. Gresho, P. and C. Upson (1983), “Application of a Modified Finite Element Method to the Time-Dependent Thermal Convection of a Liquid Metal,” in Proceedings of the Third Numerical Methods in Laminar and Turbulent Flow Conference, 8–11 August 1983, Seattle, WA.Google Scholar
  25. Gresho, P., R. Lee, and R. Sani (1978), “Chapter 19. Advection-Dominated Flows, with Emphasis on the Consequences of Mass Lumping,” Finite Elements in Fluids, Vol. 3, Gallagher et al. (Eds.), John Wiley & Sons, Chichester, U.K., p. 335–350.Google Scholar
  26. Gresho, P., R. Lee, and R. Sani (1980a), “On the Time-Dependent Solution of the Incompressible Navier-Stokes Equations in Two-and Three-Dimensions,” Recent Advances in Numerical Methods in Fluids, Vol. 1, Pineridge Press Ltd., Swansea, U.K., p. 27–81.Google Scholar
  27. Gresho, P., R. Lee, S. Chan, and R. Sani (1980b), “Solution of the Time-Dependent Incompressible Navier-Stokes and Boussinesq Equations Using the Galerkin Finite Element Method,” in “Approximation Methods for Navier-Stokes Problems,” Lecture Notes in Mathematics, Springer-Verlag, New York, NY, No. 771, p. 203–223.Google Scholar
  28. Gresho, P., S. Chan, C. Upson, and R. Lee (1984), “A Modified Finite Element Method for Solving the Time-Dependent, Incompressible Navier-Stokes Equations,” Int. J. Num. Meth. Fl. Theory, 4 (6), p. 557–598CrossRefMATHGoogle Scholar
  29. Gresho, P., S. Chan, C. Upson, and R. Lee (1984), “A Modified Finite Element Method for Solving the Time-Dependent, Incompressible Navier-Stokes Equations,” Int. J. Num. Meth. Fl. Applications, 4 (7), p. 619–640.CrossRefMATHGoogle Scholar
  30. Gresho, P., R. Lee, R. Sani, M. Maslanik, and B. Eaton (1987), “The Consistent Galerkin FEM for Computing Derived Boundary Quantities in Thermal and/or Fluids Problems,” Int. J. Num. Meth. Fl., 7, p. 371–394.CrossRefMATHGoogle Scholar
  31. Gunzburger, M. (1986), “Mathematical Aspects of Finite Element Methods for Incompressible Flows,” ICASE Report No. 86–62, NASA-Langley Research Center, Hampton, VA.Google Scholar
  32. Heywood, J. (1980), “The Navier-Stokes Equations: On the Existence, Regularity, and Decay of Solutions,” Indiana Univ. Math. Journal, 29, p. 639.MathSciNetMATHGoogle Scholar
  33. Heywood, J. and R. Rannacher (1982), “Finite Element Approximation of the Non-stationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization,” SIAM J. Num. Anal., 19 (2), p. 275.CrossRefMathSciNetMATHGoogle Scholar
  34. Irons, B. and S. Ahmad (1980), Techniques of Finite Elements, Ellis Horwood Ltd., Chichester, U.K.Google Scholar
  35. Lee, R. and J. Leone, Jr. (1988), “A Modified Finite Element Model for Mesoscale Flows over Complex Terrain,” to appear in Computers and Math. with Applications; also Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-97030 (1987).Google Scholar
  36. Lee, R., P. Gresho, and R. Sani (1976), “A Comparative Study of Certain Finite-Element and Finite-Difference Methods in Advection-Diffusion Simulations,” in Proceedings of the Summer Computer Simulation Conference, 12–14 July 1976, Washington, D. C., p. 37–42Google Scholar
  37. Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-77539 (1976).Google Scholar
  38. Malkus, D., M. Plesha, and M.-R. Liu (1988), “Revised Stability Conditions in Transient Finite Element Analysis,” Comp. Meth. Appl. Mechanics and Eng., 68, p. 97.CrossRefADSMathSciNetMATHGoogle Scholar
  39. Martin, H. and G. Carey (1973), An Introduction to Finite Element Analysis, McGraw-Hill, New York, NY.Google Scholar
  40. Orszag, S., M. Israeli, and M. DeVille (1986), “Boundary Conditions for Incompressible Flows,” J. Sci. Comput., 1 (1), p. 75.CrossRefMATHGoogle Scholar
  41. Ortega, J. and W. Rheinboldt (1980), Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, New York.Google Scholar
  42. Rowley, J. and P. Gresho (1987), “Some New Results Using Quadratic Finite Elements for Pure Advection,” Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-96615.Google Scholar
  43. Sani, R., P. Gresho, R. Lee, D. Griffiths, and M. Engelman (1981), “The Cause and Cure (?) of the Spurious Pressures Generated by Certain FEM Solutions of the Incompressible Navier-Stokes Equations,” Int. J. Num. Meth. Fl., 1 (1), p. 17–43CrossRefMathSciNetMATHGoogle Scholar
  44. Sani, R., P. Gresho, R. Lee, D. Griffiths, and M. Engelman (1981), “The Cause and Cure (?) of the Spurious Pressures Generated by Certain FEM Solutions of the Incompressible Navier-Stokes Equations,” Int. J. Num. Meth. Fl., (2), p. 171–204.Google Scholar
  45. Sani, R., B. Eaton, P. Gresho, R. Lee, and S. Chan (1981), “On the Solution of the Time-Dependent Incompressible Navier-Stokes Equations via a Penalty Galerkin Finite Element Method,” in Proceedings of the Second Numerical Methods in Laminar and Turbulent Flow Conference, C. Taylor and B. Schrefller (Eds.), Pineridge Press Ltd., Swansea, U.K., p. 41–51.Google Scholar
  46. Strang, G. (1986), Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA.Google Scholar
  47. Strang, G. (1988), “A Framework for Equilibrium Equations,” SIAM Review, 30 (2), p. 283.CrossRefMathSciNetMATHGoogle Scholar
  48. Strang, G. and G. Fix (1973), An Analysis of the Finite Element Method, Prentice-Hall, New Jersey.MATHGoogle Scholar
  49. Strikwerda, J. (1984), “Finite Difference Methods for the Stokes and Navier-Stokes Equations,” SIAM J. Sci. Stat. Comput., 5 (1), p. 56–68.CrossRefMathSciNetMATHGoogle Scholar
  50. Upson, C., P. Gresho, R. Sani, S. Chan, and R. Lee (1983), “A Thermal Convection Simulation in Three Dimensions by a Modified Finite Element Method,” Numerical Properties and Methodologies in Heat Transfer: Proceedings of the Second National Symposium, T. Shih ( Ed. ), Hemisphere Publishing Corporation, p. 245–259Google Scholar
  51. Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-85555 (1981).Google Scholar
  52. Wait, R. and A. Mitchell (1985), Finite Element Analysis and Applications, John Wiley & Sons, Chichester, U.K.MATHGoogle Scholar
  53. Whiteman, J. (1975), “Some Aspects of the Mathematics of Finite Elements,” in The Mathematics of Finite Elements and Applications II, J. Whiteman (Ed.), Academic Press, London, U.K.Google Scholar
  54. Zienkiewicz, O. (1977), The Finite Element Method, McGraw-Hill, London, U.K.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • Philip M. Gresho
    • 1
  1. 1.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations