Skip to main content

The Finite Element Method in Viscous Incompressible Flows

  • Conference paper
Recent Advances in Computational Fluid Dynamics

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 43))

Abstract

My “assignment” from the conference organizers was to prepare an overview and/or tutorial lecture on the subject in the title. I chose to emphasize “tutorial” and in a way that I believe is useful; i.e., it is not a survey of the field nor of its historical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfrink, B. (1981), “On the Newmann Problem for the Pressure in a Navier-Stokes Model,” in Proceedings of the Second International Conference on Numerical Methods in Laminar and Turbulent Flow, Pineridge Press Ltd., Swansea, U.K., p. 389.

    Google Scholar 

  • Boland, J. M. and R. A. Nicolaides (1984), “Stability of Finite Elements under Divergence Constraints,” SIAM J. Num. Anal., 20 (4), p. 722.

    Article  MathSciNet  Google Scholar 

  • Brown, P. and A. Hindmarsh (1987), “Reduced Storage Matrix Methods in Stiff ODE Systems,” Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL95088, Rev. 1.

    Google Scholar 

  • Chan, S. T. (1988), “FEM3A: A Finite Element Model for the Simulation of Gas Transport and Dispersion: User’s Manual,” Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-21043.

    Google Scholar 

  • Chan, S., H. Rodean, and D. Ermak (1984), “Numerical Simulations of Atmospheric Releases of Heavy Gases over Variable Terrain,” Air Pollution Modeling and Its Application III, Plunum Press, p. 295–341; also Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-87256 (1982).

    Google Scholar 

  • Chan, S., D. Ermak, and L. Morris (1987), “FEM3 Model Simulations of Selected Thorney Island Phase I Trials,” J. Hazardous Materials, 16, p. 267–292.

    Article  Google Scholar 

  • Chorin, A. (1968), “Numerical Solution of the Navier-Stokes Equations,” Math. Comput., 22, p. 745–762.

    Article  MathSciNet  MATH  Google Scholar 

  • Chorin, A. (1969), “On the Convergence of Discrete Approximations to the Navier-Stokes Equations,” Math. of Comp., 23 (106), p. 341.

    Article  MathSciNet  MATH  Google Scholar 

  • Cuvelier, C., A. Segal, and A. van Steenhoven (1986), Finite Element Methods and NavierStokes Equations, D. Reidel, Dordrecht, Netherlands.

    Google Scholar 

  • Engelman, M. and R. Sani (1983), “Finite-Element Simulation of an In-Package Pasteurization Process,” Num. Heat Transfer, 8, 41–54.

    ADS  Google Scholar 

  • Engelman, M., R. Sani, P. Gresho, and M. Bercovier (1982), “Consistent vs. Reduced Integration Penalty Methods for Incompressible Media Using Several Old and New Elements,” Int. J. Num. Meth. Fl., 2 (1), p. 25–42.

    Article  MathSciNet  MATH  Google Scholar 

  • FIDAP Theoretical Manual, Version 4.0,“ Fluid Dynamics International, 1600 Orrington Avenue, Ste. 400, Evanston, Ill 60201 (September 1987).

    Google Scholar 

  • Fortin, M. (1983), “Two Comments on: Consistent vs. Reduced Integration Penalty Methods for Incompressible Media Using Several Old and New Elements,” Int. J. Num. Meth. Fl., 3, p. 93.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghia, K., W. Hanky, and J. Hodge (1979), “Use of Primitive Variables in the Solution of Incompressible Navier-Stokes Equations,” AIAA J., 17 (3), p. 298.

    Article  ADS  MATH  Google Scholar 

  • Glowinski, R. (1984), Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, NY.

    Google Scholar 

  • Gresho, P. (1985), “Contribution to von Karman Institute Lecture Series on ‘Computational Fluid Dynamics’: Advection-Diffusion and Navier-Stokes Equations,” Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-92275.

    Google Scholar 

  • Gresho, P. (1985), “A Modified Finite Element Method for Solving the Incompressible Navier-Stokes Equations,” Large-Scale Computations in Fluid Mechanics; Vol. 22, Part 1: Lectures in Applied Mathematics, Americal Mathematical Society, Providence, RI, p. 193.

    Google Scholar 

  • Gresho, P. (1985), “Solution of the Time-Dependent, Incompressible Navier-Stokes Equations via a Modified Finite Element Method,” Latin Am. J. Heat and Mass Transfer, 8 (3–4), p. 237–286.

    Google Scholar 

  • Gresho, P. (1986), “Time Integration and Conjugate Gradient Methods for the Incompressible Navier-Stokes Equations,” Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-94000.

    Google Scholar 

  • Gresho, P. and S. Chan (1985), “A New Semi-implicit Method for Solving the Time-Dependent Conservation Equations for Incompressible Flow,” Numerical Methods in Laminar and Turbulent Flow, Pineridge Press Ltd., Swansea, U.K., p. 3–21.

    Google Scholar 

  • Gresho, P. and S. Chan (1988), “Solving the Incompressible Navier-Stokes Equations using Consistent Mass and the Pressure Poisson Equation,” ASME Symposium on Recent Developments in Computational Fluid Dynamics, 28 November-2 December 1988, Chicago, IL.

    Google Scholar 

  • Gresho, P. and R. Lee (1981), “Don’t Suppress the Wiggles—They’re Telling You Something!” Comp. and Fluids, 9 (2), p. 223–255.

    Article  MathSciNet  Google Scholar 

  • Gresho, P. and R. Sani (1987), “On Pressure Boundary Conditions for the Incompressible Navier-Stokes Equations,” Int. J. Num. Meth. Fl., 7, p. 1111–1145.

    Article  MATH  Google Scholar 

  • Gresho, P. and C. Upson (1983), “Application of a Modified Finite Element Method to the Time-Dependent Thermal Convection of a Liquid Metal,” in Proceedings of the Third Numerical Methods in Laminar and Turbulent Flow Conference, 8–11 August 1983, Seattle, WA.

    Google Scholar 

  • Gresho, P., R. Lee, and R. Sani (1978), “Chapter 19. Advection-Dominated Flows, with Emphasis on the Consequences of Mass Lumping,” Finite Elements in Fluids, Vol. 3, Gallagher et al. (Eds.), John Wiley & Sons, Chichester, U.K., p. 335–350.

    Google Scholar 

  • Gresho, P., R. Lee, and R. Sani (1980a), “On the Time-Dependent Solution of the Incompressible Navier-Stokes Equations in Two-and Three-Dimensions,” Recent Advances in Numerical Methods in Fluids, Vol. 1, Pineridge Press Ltd., Swansea, U.K., p. 27–81.

    Google Scholar 

  • Gresho, P., R. Lee, S. Chan, and R. Sani (1980b), “Solution of the Time-Dependent Incompressible Navier-Stokes and Boussinesq Equations Using the Galerkin Finite Element Method,” in “Approximation Methods for Navier-Stokes Problems,” Lecture Notes in Mathematics, Springer-Verlag, New York, NY, No. 771, p. 203–223.

    Google Scholar 

  • Gresho, P., S. Chan, C. Upson, and R. Lee (1984), “A Modified Finite Element Method for Solving the Time-Dependent, Incompressible Navier-Stokes Equations,” Int. J. Num. Meth. Fl. Theory, 4 (6), p. 557–598

    Article  MATH  Google Scholar 

  • Gresho, P., S. Chan, C. Upson, and R. Lee (1984), “A Modified Finite Element Method for Solving the Time-Dependent, Incompressible Navier-Stokes Equations,” Int. J. Num. Meth. Fl. Applications, 4 (7), p. 619–640.

    Article  MATH  Google Scholar 

  • Gresho, P., R. Lee, R. Sani, M. Maslanik, and B. Eaton (1987), “The Consistent Galerkin FEM for Computing Derived Boundary Quantities in Thermal and/or Fluids Problems,” Int. J. Num. Meth. Fl., 7, p. 371–394.

    Article  MATH  Google Scholar 

  • Gunzburger, M. (1986), “Mathematical Aspects of Finite Element Methods for Incompressible Flows,” ICASE Report No. 86–62, NASA-Langley Research Center, Hampton, VA.

    Google Scholar 

  • Heywood, J. (1980), “The Navier-Stokes Equations: On the Existence, Regularity, and Decay of Solutions,” Indiana Univ. Math. Journal, 29, p. 639.

    MathSciNet  MATH  Google Scholar 

  • Heywood, J. and R. Rannacher (1982), “Finite Element Approximation of the Non-stationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization,” SIAM J. Num. Anal., 19 (2), p. 275.

    Article  MathSciNet  MATH  Google Scholar 

  • Irons, B. and S. Ahmad (1980), Techniques of Finite Elements, Ellis Horwood Ltd., Chichester, U.K.

    Google Scholar 

  • Lee, R. and J. Leone, Jr. (1988), “A Modified Finite Element Model for Mesoscale Flows over Complex Terrain,” to appear in Computers and Math. with Applications; also Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-97030 (1987).

    Google Scholar 

  • Lee, R., P. Gresho, and R. Sani (1976), “A Comparative Study of Certain Finite-Element and Finite-Difference Methods in Advection-Diffusion Simulations,” in Proceedings of the Summer Computer Simulation Conference, 12–14 July 1976, Washington, D. C., p. 37–42

    Google Scholar 

  • Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-77539 (1976).

    Google Scholar 

  • Malkus, D., M. Plesha, and M.-R. Liu (1988), “Revised Stability Conditions in Transient Finite Element Analysis,” Comp. Meth. Appl. Mechanics and Eng., 68, p. 97.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Martin, H. and G. Carey (1973), An Introduction to Finite Element Analysis, McGraw-Hill, New York, NY.

    Google Scholar 

  • Orszag, S., M. Israeli, and M. DeVille (1986), “Boundary Conditions for Incompressible Flows,” J. Sci. Comput., 1 (1), p. 75.

    Article  MATH  Google Scholar 

  • Ortega, J. and W. Rheinboldt (1980), Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, New York.

    Google Scholar 

  • Rowley, J. and P. Gresho (1987), “Some New Results Using Quadratic Finite Elements for Pure Advection,” Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-96615.

    Google Scholar 

  • Sani, R., P. Gresho, R. Lee, D. Griffiths, and M. Engelman (1981), “The Cause and Cure (?) of the Spurious Pressures Generated by Certain FEM Solutions of the Incompressible Navier-Stokes Equations,” Int. J. Num. Meth. Fl., 1 (1), p. 17–43

    Article  MathSciNet  MATH  Google Scholar 

  • Sani, R., P. Gresho, R. Lee, D. Griffiths, and M. Engelman (1981), “The Cause and Cure (?) of the Spurious Pressures Generated by Certain FEM Solutions of the Incompressible Navier-Stokes Equations,” Int. J. Num. Meth. Fl., (2), p. 171–204.

    Google Scholar 

  • Sani, R., B. Eaton, P. Gresho, R. Lee, and S. Chan (1981), “On the Solution of the Time-Dependent Incompressible Navier-Stokes Equations via a Penalty Galerkin Finite Element Method,” in Proceedings of the Second Numerical Methods in Laminar and Turbulent Flow Conference, C. Taylor and B. Schrefller (Eds.), Pineridge Press Ltd., Swansea, U.K., p. 41–51.

    Google Scholar 

  • Strang, G. (1986), Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA.

    Google Scholar 

  • Strang, G. (1988), “A Framework for Equilibrium Equations,” SIAM Review, 30 (2), p. 283.

    Article  MathSciNet  MATH  Google Scholar 

  • Strang, G. and G. Fix (1973), An Analysis of the Finite Element Method, Prentice-Hall, New Jersey.

    MATH  Google Scholar 

  • Strikwerda, J. (1984), “Finite Difference Methods for the Stokes and Navier-Stokes Equations,” SIAM J. Sci. Stat. Comput., 5 (1), p. 56–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Upson, C., P. Gresho, R. Sani, S. Chan, and R. Lee (1983), “A Thermal Convection Simulation in Three Dimensions by a Modified Finite Element Method,” Numerical Properties and Methodologies in Heat Transfer: Proceedings of the Second National Symposium, T. Shih ( Ed. ), Hemisphere Publishing Corporation, p. 245–259

    Google Scholar 

  • Lawrence Livermore National Laboratory Report, Livermore, CA, UCRL-85555 (1981).

    Google Scholar 

  • Wait, R. and A. Mitchell (1985), Finite Element Analysis and Applications, John Wiley & Sons, Chichester, U.K.

    MATH  Google Scholar 

  • Whiteman, J. (1975), “Some Aspects of the Mathematics of Finite Elements,” in The Mathematics of Finite Elements and Applications II, J. Whiteman (Ed.), Academic Press, London, U.K.

    Google Scholar 

  • Zienkiewicz, O. (1977), The Finite Element Method, McGraw-Hill, London, U.K.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Gresho, P.M. (1989). The Finite Element Method in Viscous Incompressible Flows. In: Chao, C.C., Orszag, S.A., Shyy, W. (eds) Recent Advances in Computational Fluid Dynamics. Lecture Notes in Engineering, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83733-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83733-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50872-4

  • Online ISBN: 978-3-642-83733-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics