Skip to main content

The Structural and Functional Domain Organization of the Chicken Lysozyme Gene Locus

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 3))

Abstract

Chromatin, the nuclear form in which eukaryotic DNA is packaged with protein, is most commonly described as a regular structure of DNA wrapped around nucleosomal histone octamers connected by histone H1—covered linker DNA regions (Richmond et al. 1983). For higher order structures this 10-nm fiber of “beads on the string chromatin”is wound into “solenoids” with six nucleosomes per turn forming a 30 nm filament (McGhee et al. 1980). In metaphase chromosomes and in parts of the interphase nucleus even higher DNA compaction must exist. Metaphase or interphase chromatin was shown to be organized in large loops at their base attached to either chromosomal protein scaffolds or nuclear matrix material, respectively (Paulson and Laemmli 1977; Vogelstein et al. 1980). How are genes organized in respect to these structures? Which chromatin conformation permits the dynamic changes that are necessary for activation and specific regulation of transcription and replication? What is the biological relevance of the loop-domain organization of chromatin? These questions must be answered if we are to understand chromatin function on the level of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldacci P, Royal A, Brégégère F, Abastado JP, Carni B, Daniel F, Kourilsky P (1981) DNA organisation of the chicken lysozyme gene region. Nucleic Acids Res 9: 3575–3588

    Article  PubMed  CAS  Google Scholar 

  • Banerji J, Olson L, Schaffner W (1983) A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33: 729–740

    Article  PubMed  CAS  Google Scholar 

  • Beug H, von Kichbach A, Döderlein G, Conscience J-F, Graf T (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia vinsses display three distinct phenotypes of differentiation. Cell 18: 375–390

    Article  PubMed  CAS  Google Scholar 

  • Borgmeyer U, Nowock J, Sippel AE (1984) The TGGCA-binding protein: a eukaryotic nuclear protein recognizing a symmetrical sequence on double-stranded linear DNA. Nucleic Acids Res 12: 4295–4311

    Article  PubMed  CAS  Google Scholar 

  • Church GM, Ephrussi A, Gilbert W, Tonegawa S (1985) Celltype-specific contacts to immunoglobulin enhancers in nuclei. Nature 313: 798–801

    Article  PubMed  CAS  Google Scholar 

  • Cockerill PN, Garrard WT (1986) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44: 273–282

    Article  PubMed  CAS  Google Scholar 

  • Emerson BM, Felsenfeld G, (1984) Specific factor conferring nuclease hypersensitivity at the 5’end of the chicken adult B-globin gene. Proc Natl Acad Sci USA 81: 95–99

    Article  PubMed  CAS  Google Scholar 

  • Fritton HP, Sippel AE, Igo-Kemenes T (1983) Nuclease-hypersensitive sites in the chromatin domain of the chicken lysozyme gene. Nucleic Acids Res 11: 3467–3485

    Article  PubMed  CAS  Google Scholar 

  • Fritton HP, Igo-Kemenes T, Nowock J, Strech-Jurk U, Theisen M, Sippel AE (1987) DNasel -hypersensitive sites in the chromatin structure of the lysozyme gene in steroid hormone target and non-target cells. BioL Chem. Hoppe-Seyler 368: 111–119

    Google Scholar 

  • Fritton HP, Igo-Kemenes T, Nowock J, Strech-Jurk U, Theisen M, Sippel AE (1984) Alternative sets of DNaseI-hypersensitive sites characterize the various functional states of the chicken lysozyme gnee. Nature 311: 163–165

    Article  PubMed  CAS  Google Scholar 

  • Fritton HP, Jantzen K, Igo-Kemenes T, Nowock J, Strech-Jurk U, Theisen M, Sippel AE (1988) Chromatin domains and gene expression: Different chromatin conformations characterize the various functional states of the chicken lysozyme gene. In: Kahl G (ed) Architecture of eukaryotic genes. VCH Verlagsgesellschaft, Weinheim FRG, pp 333–353

    Google Scholar 

  • Gasser SM, Laemmli UK (1987) A glimpse at chromosomal order. 11G 3: 16–22

    Google Scholar 

  • Gillies SD, Morrison SL, Oi VT, Tonegawa S (1983) A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33: 717–728

    Article  PubMed  CAS  Google Scholar 

  • Grosveld F, Blom van Assendelft G, Greaves DR, Kollias G (1987) Position-independent, high level expression of the human ß-globin gene in transgenic mice. Cell 51: 975–985

    Article  PubMed  CAS  Google Scholar 

  • Hecht A, Berkenstam A, Strömstedt P-E, Gustafsson J-A, Sippel AE (1988) A progesterone responsive element maps to the far upstream steroid dependent DNase hypersensitive site of chicken lysozyme chromatin. EMBO J 7: 2063–2073

    PubMed  CAS  Google Scholar 

  • Jantzen H-M, Strähle U, Gloss B, Stewart F, Schmid W, Boshart M, Miksicek R, Schütz G (1987) Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell 49: 29–38

    Article  PubMed  CAS  Google Scholar 

  • Jantzen K, Fritton HP, Igo-Kemenes T (1986) The DNase I sensitive domain of the chicken lysozyme gene spans 24kb. Nucleic Acids Res 14: 6085–6099

    Article  PubMed  CAS  Google Scholar 

  • Lindenmaier W, Nguyen-Huu MC, Lurz R, Stratmann M, Blin N, Wurtz T, Hauser RI, Sippel AE, Schütz G (1979) Arrangement of coding and intervening sequences of chicken lysozyme gene. Proc Natl Acad Sci USA 76: 6196–6200

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning. Cold Spring Harbor Press, Cold Spring Harbor, USA

    Google Scholar 

  • Manley JL, Fire A, Cano A, Sharp P, Gefter ML (1980) DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc Natl Acad Sci USA 77: 3855–3859

    Article  PubMed  CAS  Google Scholar 

  • McGhee JD, Rau DC, Chamey E, Felsenfeld G (1980) Orientation of the nucleosome within the higher order structure of chromatin. Cell 22: 87–96

    Article  PubMed  CAS  Google Scholar 

  • McGhee JD, Wood WI, Dolan M, Engel JD, Felsenfeld G (1981) A 200 base pair region at the 5’end of the chicken adult ß-globin gene is accessible to nuclease digestion. Cell 27: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Mirkowitch J, Mirault M-E, Laemmli UK (1984) Organization of the higher-order chromatin loop: Specific DNA attachment sites on nuclear scaffold. Cell 39: 223–232

    Google Scholar 

  • Nowock J, Sippel AE (1982) Specific protein-DNA interaction at four sites flanking the chicken lysozyme gene. Cell 30: 607–615

    Article  PubMed  CAS  Google Scholar 

  • Paulsen JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12: 817–828

    Article  Google Scholar 

  • Phi-Van L, Striding WH (1988) The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain. EMBO J 7: 655–664

    CAS  Google Scholar 

  • Puschel AW (1986) In vitro Analyse der Protein-DNA Wechselwirkungen am Lysozym-Enhancer des Huhns. Diploma Thesis, University of Heidelberg

    Google Scholar 

  • Queen C, Baltimore D (1983) Immunoglobulin gene transcription is activated by downstream sequence elements. Cell 33: 741–748

    Article  PubMed  CAS  Google Scholar 

  • Reudelhuber T (1984) A step closer to the principles of eukaryotic transcriptional control. Nature 311: 301

    Article  PubMed  CAS  Google Scholar 

  • Richmond TJ, Finch JT, Klug A (1983) Studies of nucleosome structure. Cold Spring Harbor Symp Quant Biol 47: 493–501

    PubMed  Google Scholar 

  • Rosenthal N, Kress M, Gruss P, Khoury G (1983), BK viral enhancer element and a human cellular homolog. Science 222: 749–755

    Article  PubMed  CAS  Google Scholar 

  • Schaffner G, Schirm S, Müller-Baden B, Weber F, Schaffner W (1988) Redundancy of information in enhancers as a principle of mammalian transcription control. J Mol Biol 201: 81–90

    Article  PubMed  CAS  Google Scholar 

  • Schütz G, Nguyen-Huu MC, Giesecke K, Hynes NE, Groner B, Wurtz T, Sippel AE (1978) Homnonal control of egg white protein messenger RNA synthesis in the chicken oviduct. Cold Spring Harbor Symp Quant Biol 42: 617–624

    PubMed  Google Scholar 

  • Shalloway D, Kleinberger T, Livingston DM (1980) Mapping of SV40 DNA replication origin region binding sites for the SV40 T antigen by protection against exonuclease III digestion. Cell 20: 411–422

    Article  PubMed  CAS  Google Scholar 

  • Sippel AE, Fritton HP, Theisen M, Borgmeyer U, Strech-Jurk U, Igo-Kemenes T (1986) The TGGCA protein binds in vitro to DNA contained in a nuclease-hypersensitive region that is present only in active chromatin of the lysozyme gene. In: Botchan M, Grodzicker T, Sharp PA (eds) Cancer Cells 4; DNA Tumor viruses. Cold Spring Harbor Press, pp 155–162

    Google Scholar 

  • Sippel AE, Theisen M, Borgmeyer U, Strech-Jurk U, Rupp RAW, Püschel AW, Müller A, Hecht A, Stief A, Grussenmeyer T (1988) Regulatory function, and molecular structure of DNaseI-hypersensitive elements in the chromatin domain of a gene. In: Kahl G (ed) Architecture of eukaryotic genes. VCH Verlagsgesellschaft, Weinheim FRG, pp 355–369

    Google Scholar 

  • Stalder J, Larsen A, Engel JD, Dolan M, Groudine M, Weintraub H (1980) Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNase I. Cell 20: 451–460

    Article  PubMed  CAS  Google Scholar 

  • Steiner C, Muller M, Baniahmad A, Renkawitz R (1987) Lysozyme gene activity in chicken macrophages is controlled by positive and negative regulatory elements. Nucl Acids Res 15: 4163–4178

    Article  PubMed  CAS  Google Scholar 

  • Striding WH, Dölle A, Sippel AE (1986) Chromatin structure of the chicken lysozyme gene domain is determined by chromatin fractionation and micrococcal nuclease digestion. Biochemistry 25: 495–502

    Article  Google Scholar 

  • Theisen M, Stief A, Sippel AE (1986) The lysozyme enhancer: cell-specific activation of the chicken lysozyme gene by a far-upstream DNA element. EMBO J 5: 719–724

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Pardoll DM, Coffey DS (1980) Supercoiled loops and eucaryotic DNA replication. Cell 22: 79–85

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H (1985) Assembly and propagation of repressed and derepressed chromosomal states. Cell 42: 705–711

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Groudine M (1976) Chromosomal subunits in active Genes have an altered conformation. Science 193: 848–856

    Article  PubMed  CAS  Google Scholar 

  • Wigler M, Pellicer A, Silverstein S, Axel R (1978) Biochemical transfer of single copy eukaryotic genes using total cellular DNA as donor. Cell 14: 725–731

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1980) The 5’ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNasel. Nature 286: 854–860

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Bingham PM, Livak KJ, Hohngren R, Elgin SCR (1979) The chromatin structure of specific genes: Evidence for higher order domains of defined DNA sequence. Cell 16: 797–806

    Google Scholar 

  • Zaret KS, Yamamoto KR (1984) Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell 38: 29–38

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sippel, A.E. et al. (1989). The Structural and Functional Domain Organization of the Chicken Lysozyme Gene Locus. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83709-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83709-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83711-1

  • Online ISBN: 978-3-642-83709-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics