Skip to main content

Structure and Mechanism of the trp Repressor/Operator System

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 3))

Abstract

The trp aporepressor of Escherichia coli exists as a homodimer of two 107-amino acid chains and is activated to the trp repressor by the non-cooperative binding of two molecules of the co-repressor, L-tryptophan (Joachimiak et al. 1983). Once activated, the trp repressor binds with specificity and high affinity (Joachimiak et al. 1983; Klig et al. 1987; Carey 1988) to the operators of three operons, preventing initiation of transcription. These operons are: trpEDCBA, which encodes the enzymes committed to L-tryptophan biosynthesis; aroH,which encodes one of the isozymes for the first step in aromatic amino acid biosynthesis; and trpR, which encodes the trp aporepressor protein (Joachimiak et al. 1983; Somerville 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JE, Ptashne M, Harrison SC (1987) Structure of the repressor/operator complex of bacteriophage 434. Nature 1987: 846–852

    Article  Google Scholar 

  • Arvidson DN, Bruce C, Gunsalus RP (1986) Interaction of the Escherichia coli trp aporepressor with its ligand, L-ttyptophan. J Biol Chem 261: 238–2432

    PubMed  CAS  Google Scholar 

  • Bass S, Sugiono P, Arvidson DN, Gunsalus RP, Youderian P (1987) DNA sepcificity determinants of E. coli tryptophan repressor binding. Genes Dev 1: 565–572

    Article  PubMed  CAS  Google Scholar 

  • Bass S, Sorrells V, Youderian P (1988) Mutant trp repressors with new DNA-binding specificity. Science 242: 240–245

    Article  PubMed  CAS  Google Scholar 

  • Carey J (1988) Quantitative studies of DNA binding by E. coli trp repressor using gel electrophoresis. Proc Natl Acad Sci USA 85: 975–979

    Article  PubMed  CAS  Google Scholar 

  • Carey J (1989) The N-terminal arms of trp repressor have multiple conformations when bound to DNA. J Biol Chem 264: 1941–1945

    PubMed  CAS  Google Scholar 

  • Caruthers MH, Barone AD, Beltman, J, Bracco LP, Doods DR, Dubendorff JW, Eisenberg LT, Gayle RB, Prosser K, Rosendahl M, Tang JW (1986) Oxender DL (ed)in: Protein Structure Folding and Design, Alan R. Liss, New York, pp. 221–228 The interaction of Cro CI, and Escherichia coli RNA polymerase with operators and promoters.

    Google Scholar 

  • Fratini AV, Kopka ML, Drew HR, Dickerson RE (1982) Reversible bending and helix geometry in a B-DNA Dodecamer CGCGAATTBrCGCG. J Biol Chem 257: 14686–14707

    PubMed  CAS  Google Scholar 

  • Gamer MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: applications to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9: 3047–3060

    Article  Google Scholar 

  • Graddis DJ, Klig LS, Yanofsky C, Oxender DL (1988) Formation and analysis of heterodimers between wild type and mutant trp aporepressor polypeptide of E. coli. Proteins 4, 173–181

    Article  PubMed  CAS  Google Scholar 

  • Gunsalus RP, Yanofsky C (1980) Nucleotide sequence and expression of E. coli trpR, the structural gene for the trp aporepressor. Proc Natl Acad Sci USA 77: 7117–7121

    Article  PubMed  CAS  Google Scholar 

  • Joachimiak A, Kelly RL, Gunsalus RP, Yanofsky C, Sigler, PB (1983) Purification and charectization of trp aporepressor. Proc. Natl Acad Sci USA 80: 668–672

    Google Scholar 

  • Joachimiak A, Marmorstein RQ, Schevitz RW, Madecki W, Fox JL, Sigler PB (1987) Crystals of the tip repressor/operator complex suitable for x-ray diffraction analysis. J Biol Chem 262: 4917–4921

    PubMed  CAS  Google Scholar 

  • Kelly RL, Yanofsky C (1982) Mutational studies with the tip repressor of E. Coli support the helix-turn-helix model of repressor recognition of operator DNA. Proc Natl Acad Sci USA 79: 3120–3124

    Article  Google Scholar 

  • Klig LS, Yanofsky C (1988) Increased binding of operator DNA by trp superrepressor EK49. J Biol Chem 263: 243–246

    PubMed  CAS  Google Scholar 

  • Klig LS, Crawford IP, Yanofsky C (1987) Analysis of trp repressor-operator interaction by filter binding. Nucleic Acids Res 15: 5339–5351

    Article  PubMed  CAS  Google Scholar 

  • Kumamoto AA, Miller WG, Gunsalus RP (1987) Escherichia coli tryptophan repressor binds multiple sites within the aroll and trp operators. Genes Dev 1: 556–564

    Google Scholar 

  • Lane AN (1986) The interaction of the trp repressor from Eschericia coli with L-tryptophan and indole proponic acid. Eur J. Biochem 157: 405–413

    Article  PubMed  CAS  Google Scholar 

  • Lane AN, Jardetzky O (1985) NMR studies of the tip repressor from Eschericia coli. Eur J. Biochem 152: 395–404

    Google Scholar 

  • Lawson CL, Sigler PB (1988) The structure of trp pseudorepressor at 1.65 A shows why indole propionate acts as a trp ‘inducer’. Nature 333: 869–871

    Article  PubMed  CAS  Google Scholar 

  • Lawson CL, Zhang R-g, Schevitz RW, Otwinowski Z, Joachimiak A, Sigler PB (1988) Flexibility of the DNA-binding domains of trp repressor. Proteins 3: 18–31

    Article  PubMed  CAS  Google Scholar 

  • Lawson CL, Zhang R-g, Schevitz RW, Otwinowski Z, Joachimiak A, Sigler PB (1988) Flexibility of the DNA-binding domains of trp repressor. Proteins 3: 18–31

    Article  PubMed  CAS  Google Scholar 

  • Marmorstein RQ, Joachimiak A, Sprint M, Sigler PB (1987) The structural basis for the interaction between L-tryptophan and the Eschericia coli trp aporepressor. J. Biol Chem 262: 4922–4927

    PubMed  CAS  Google Scholar 

  • McKay DB, Weber IT, Steitz TA, (1982) Structure of catabolite gene activator protein at 2.9 A. Incorporation of amino acid sequence and interactions with cyclic AMP. J Biol Chem 257:9518–9524 Ohlendorf DH, Anderson WF, Fisher WF, Takeda RG, Matthews BW (1982) The molecular basis for protein-DNA recognition inferred from the structure of the cro repressor. Nature 298: 718–723

    Article  Google Scholar 

  • Ohlendorf DH, Anderson WF, Matthews BW (1983) Many gene-regulatory proteins appear to have evolved from a commen precurser. J Mol Evol 19: 109–114

    Article  PubMed  CAS  Google Scholar 

  • Otwinowski Z, Schevitz RW, Zhang R-g, Lawson CL, Joachimiak A, Marmorstein RQ, Luisi B, Sigler PB (1988) The crystal structure of the trp repressor/operator complex at atomic resolution. Nature 335, 321–329

    Article  PubMed  CAS  Google Scholar 

  • Pabo CO, Lewis M (1982) The operator binding domain of ? repressor: structure and DNA recognition. Nature 298: 443–447

    Article  PubMed  CAS  Google Scholar 

  • Pabo CO, Krouatin W, Jeffrey A, Sauer RT (1982) The N-terminal arms of 1. repressor wrap around the operator DNA. Nature 298: 441–443

    Article  PubMed  CAS  Google Scholar 

  • Paluh JL, Yanofsky C (1986) High level production and rapid purification of the E. coli. trp repressor. Nucleic Acids Res 14: 7851–7860

    Article  PubMed  CAS  Google Scholar 

  • Pauley RT, Fredricks WW, Smith OH (1978) Effect on tryptophan analogs on derepression of the Eschericia coli tryptophan operon by indole-3-propionic acid. J Bacteriol 136: 219–226

    PubMed  CAS  Google Scholar 

  • Phillips RS, Marmorstein RQ (1988) 6-Nitro-L-tryptophan: A novel spectroscopic probe of trp aporepressor and human serum albumin. Arch Biochem Biophys 262: 337–344

    Google Scholar 

  • Record MT (1988) Biophyiscal principles of specificity and stability of protein-DNA interactions. In: Wells

    Google Scholar 

  • RD, Harvey SC (eds) Unusual DNA structures Springer Berlin Heidelberg New York Tokyo, pp 237–252

    Google Scholar 

  • Riggs AD, Suzuki H, Bourgeois S (1970) Lac repressor/operator interaction. J Mol Biol 48: 67–83

    Google Scholar 

  • Schevitz RW, Otwinowski Z, Joachimialt A, Lawson CL, Sigler PB (1985) The three dimensional structure of trp repressor. Nature 317: 782–786

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC, Rosenberg JM, Rich A (1976) Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci USA 73: 804–808

    Article  PubMed  CAS  Google Scholar 

  • Somerville RL (1983) Tryptophan: Biosynthesis, regulation and large scale production. In: Hermann RM, Somerville RL (eds) Amino Acid Biosynthesis and Regulation. Addison-Wesley, Reading, MA, pp 351–378

    Google Scholar 

  • Steitz TA, Ohlendorf DH, McKay DB, Anderson WF, Matthews BW (1982) Structural similarities in the DNA-binding domains of catabolite gene activator and cro repressor proteins. Proc Natl Acad Sci USA 79: 3097–3100

    Article  PubMed  CAS  Google Scholar 

  • von Hippel PH, Berg OG (1986) On the specificity of DNA-protein interactions. Proc Nail Acad Sci USA 83: 1608–1612

    Article  Google Scholar 

  • Yamaoka K, Tanigawara Y, Tenunichi N, Toyozo U (1981) Apharmacokinetic analysis program (multi) for microcomputer. J Phann Dyn 4: 879–885

    CAS  Google Scholar 

  • Zhang R-g, Joachimiak A, Lawson CL, Schevitz RW, Otwinowski Z, Sigler PB (1987) The crystal structure of trp aporepressor at 1.8 A shows how binding tryptophan enhances DNA affinity. Nature 327: 591–597

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marmorstein, R.Q., Sigler, P.B. (1989). Structure and Mechanism of the trp Repressor/Operator System. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83709-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83709-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83711-1

  • Online ISBN: 978-3-642-83709-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics