Skip to main content

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 3))

Abstract

The removal of introns from the primary transcript occurs by RNA splicing. Three major types of RNAs: tRNA, rRNA and mRNA, are known to contain introns. There are two general questions concerning any splicing mechanism: first, how is the precise recognition and alignment of the splice junctions achieved in introns whose lengths vary from a few hundred nucleotides to several thousands of nucleotides and, second, what are the biochemical mechanisms of the cleavage and ligation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi M, Hornig H, Weissmann C (1987) 5’ cleavage site in eukaryotic pre-mRNA splicings is determined by the overall 5’splice region, not by the conserved 5’GU. Cell 50:237–246

    Article  PubMed  CAS  Google Scholar 

  • Ares M (1986) U2 RNA from yeast it unexpectedly large and contains homology to vertebrate U4, U5 and U6 small nuclear RNAs. Cell 47:49–59

    Article  PubMed  CAS  Google Scholar 

  • Bindereif A, Green MR (1987) An ordered pathway os snRNP binding during mammalian pre-mRNA splicing complex assembly. EMBO J 6:2415–2424

    PubMed  CAS  Google Scholar 

  • Brody E, Abelson J (1985) The “Spliceosome”: Yeast pre-messenger RNA associates with a 40S complex in a splicing dependent reaction. Science 228:963–967

    Article  PubMed  CAS  Google Scholar 

  • Brow D, Guthrie C (1988) Yeast U6 snRNA is remarkably conserved. Nature 334:213–218

    Article  PubMed  CAS  Google Scholar 

  • Cech TR, Bass BL (1986) Biological catalysis by RNA. Annu Rev Biochem 55:599–629

    Article  PubMed  CAS  Google Scholar 

  • Cellini A, Fedler E, Rossi JJ (1986) Yeast pre-mRNA splicing efficiency depends on critical spacing requirements between the branch point and the 3’-splice site. EMBO J 5:1023–1030

    PubMed  CAS  Google Scholar 

  • Chang T-H, Clark MW, Lustig AJ, Cusick ME, Abelson J (1988) RNA11 protein is associated with yeast spliceosome and is localised in the periphery of the cell nucleus. Mol Cell Biol 8:2379–2393

    PubMed  CAS  Google Scholar 

  • Cheng S-C, Abelson J (1986) Fractionation and characterization of yeast mRNA splicing extract. Proc Natl Acad Sci 83:2387–2391

    Article  PubMed  CAS  Google Scholar 

  • Cheng S-C, Abelson J (1987) Spliceosome assembly in yeast. Genes Dev 1:1014–1027

    Article  PubMed  CAS  Google Scholar 

  • Choi YD, Grabowski PJ; Sharp PA, Dreyfuss G (1986) Heterogenous nuclear ribonuclearproteins:Role in RNA splicing. Sciene 231:1534–1539

    Article  CAS  Google Scholar 

  • Clark MW, Goelz S, Abelson J (1988) Electron microscopic identification of the yeast spliceosome. EMBO J 7:3829–3836

    PubMed  CAS  Google Scholar 

  • Couto JR, Tamm JJ, Parker R, Guthrie C (1987) A trans acting supressor restores splicing of a yeast intron with a branch point mutation. Genes Dev 1:445–455

    Article  PubMed  CAS  Google Scholar 

  • Domdey H, Apostol B, Lin RI, Newman A, Brody E, Abelson J (1984) Lariat structures are in vivo intermediates in yeast pre-mRNA splicing. Cell 39:611–621

    Article  PubMed  CAS  Google Scholar 

  • Rouser LA, Friesen JD (1986) Mutations in a yeast intron demonstate importance of specific conserved nucleotides for the two stages of nuclear mRNA splicing. Cell 45:81–93

    Article  Google Scholar 

  • Frendewey D, Keller W (1985) Stepwise assembly of a pre-mRNA splicing complex requires U-SnRNPs and specific intron sequences. Cell 42:355–367

    Article  PubMed  CAS  Google Scholar 

  • Grabowski PI, Sharp PA (1986) Affinity chormatography of splicing complexes U2, U5, U4 and U6 small nuclear ribonuclear particles in the spliceonsome. Science 233:1294–1299

    Article  PubMed  CAS  Google Scholar 

  • Grabowski PJ, Seiler SR, Sharp PA (1985) A multicomponent complex is involved in splicing of messenger RNA precursors. Cell 42:345–353

    Article  PubMed  CAS  Google Scholar 

  • Green MR (1986) Pre-mRNA splicing. Annu Rev Gene 20:671–708

    Article  CAS  Google Scholar 

  • Guthrie C, Patterson B (1988) Spliceosomal snRNAs. Annu Rev Gene 22:387–419

    Article  CAS  Google Scholar 

  • Hartwell LH (1967) Macromolecular synthesis in temperature-sensitive mubdtants in yeast. J Bacteriol 93:1662–1670

    PubMed  CAS  Google Scholar 

  • Jackson SP, Lossky M, Beggs JD (1988) Cloning of RNA8 gene of Saccharomyces terevisiae, Detection of the RNA8 protein and demonstration that it is essential for nuclear pre-mRNA splicing. Mol Cell Biol 8:1067–1075

    PubMed  CAS  Google Scholar 

  • Konarska NEVI, Sharp PA (1986) Electrophoretic seperation of complexes involved in the splicing of precursors to mRNAs. Cell 46:845–855

    Article  PubMed  CAS  Google Scholar 

  • Konarska MM; Sharp PA (1987) Interactions between small nuclear ribonucleoproteins particles in the formation of spliceosomes. Cell 49:763–774

    Article  PubMed  CAS  Google Scholar 

  • Kraemer A, Frick M, Keller W (1987) Separation of multiple components of HeLa cell nuclear extracts required for pre-messenger RNA splicing. J Biol Chem 262:17630–17640

    CAS  Google Scholar 

  • Krainer AR, Maniatis T (1985) Multiple factors including small nuclear ribonucleoproteins U 1 and U2 are necessary for pre-mRNA splicing. Cell 42:725–736

    Article  PubMed  CAS  Google Scholar 

  • Kretzner L, Rymond BC, Rosbach M (1987) S. cerevisiae U 1 RNA is large and has limited primary sequence homology to metazoan U1 snRNA. Cell 50:593–603

    Article  PubMed  CAS  Google Scholar 

  • Lamond A, Konarska MM, Sharp PA (1987) A mutational analysis of spliceosome assembly: evidence for splice site collaboration during spliceosome formation. Genes Dev 1:532–543

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Konarska MM, Grabowski PJ, Sharp PA (1988) Spliceosome assembly involves the binding and the release of U4 small nuclear ribonucleoptrotein. Proc Natl Acad Sci 85:411–415

    Article  PubMed  CAS  Google Scholar 

  • Last RL, Woolford JL (1986) Identification and nuclear localization of yeast pre-mRNA processing components: RNA2 and RNA3 proteins. J Cell Biol 103:2103–2112

    Article  PubMed  CAS  Google Scholar 

  • Last RL, Stavenhagen JB, Woolford JL (1984) Isolation and characterization of the RNA2, RNA3 and RNA11 genes of Saccharomyces cerevisiae. Mol Cell Biol 4:2396–2405

    PubMed  CAS  Google Scholar 

  • Last RL, Maddock JR, Wollford JL (1987) Evidence for related functions of the RNA genes of Saccharomyces cerevisiae. Genetics 117:619–631

    PubMed  CAS  Google Scholar 

  • Lee MG, Young RA, Beggs JD (1984) Cloning of the RNA2 gene of Saccharomyces cerevisiae. EMBO J 3:2825–2830

    PubMed  CAS  Google Scholar 

  • Legrain P, Seraphin B, Rosbash M (1988) Early commitment of yeast pre-mRNA to spliceosome assembly. Mol Cell Biol 8:3755–3760

    PubMed  CAS  Google Scholar 

  • Lerner M, Boyle JA, Mount S, Wolin SL, Steitz JA (1980) Are snRNPS involved in splicing? Nature 283:220–224

    Article  PubMed  CAS  Google Scholar 

  • Lin R-J, Lustig AI, Abelson J (1987) Splicing of yeast nuclear pre-mRNA i vitro requires functional 40S spliceosomes and several factors. Genes Dev 1:7–18

    Article  PubMed  CAS  Google Scholar 

  • Lossky M, Anderson GJ, Jackson SP, Beggs JD (1987) Identification of yeast snRNP protein and the detection of snRNP-snRNP interactions. Cell 51:1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Lustig AJ, Lin R-J, Abelson J (1986) The yeast RNA gene products are essential for mRNA splicing in vitro. Cell 47:953–963

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Reed R (1987) The role of small nuclear ribonucleoproteins in pre-mRNA splicing. Nature 325:673–678

    Article  PubMed  CAS  Google Scholar 

  • Newman M, Lin RI, Cheng S-C, Abelson J (1985) Molecular consequences of specific intron mutatins on yeast mRNA splicing in vivo and in vitro. Cell 42:335–344

    Article  PubMed  CAS  Google Scholar 

  • Padgett RA, Grabowski PJ, Konarska MM, Seiler S, Sharp PA (1986) Splicing of messenger RNA precursors. Annu Rev Biochem 55:1119–1150

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Guthrie U (1985) A point mutation in the conserved hexanucleotide at a yeast 5’-splice junction uncouples recognition, cleavage and ligation. Cell 41:107–118

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Siliciano PG, Guthrie C (1987) Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to U2 like snRNA. Cell 49:229–239

    Article  PubMed  CAS  Google Scholar 

  • Patterson B, Guthrie C (1987) An essential yeast snRNA with a U5 like domain is required for splicing in vivo. Cell 49:613–624

    Article  PubMed  CAS  Google Scholar 

  • Pearson NJ, Thombum DC, Haber JE (1982) A suppressor of temperature sensitive rna mutations that affect general and specific messenger RNA processing in yeast. Mol Cell Biol 2:571–577

    PubMed  CAS  Google Scholar 

  • Pikielny CW, Rosbash M (1985) mRNA splicing efficiency in yeast and the contribution of non conserved sequences. Cell 41:119–126

    Article  PubMed  CAS  Google Scholar 

  • Pikielny CW, Rosbash M (1986) Specific small nuclear RNAs are associated with yeast spliceosomes. Cell 45:869–877

    Article  PubMed  CAS  Google Scholar 

  • Pikielny CW, Rymond BC, Rosbash M (1986) Electrophoresis of ribonucleoproteins reveals an ordered assembly of yeast splicing complexes. Nature 324:341–345

    Article  PubMed  CAS  Google Scholar 

  • Reed R, Griffith J, Maniatis T (1985) Purification and visualization of native spliceosomes. Cell 53:949–96

    Article  Google Scholar 

  • Riedel N, Wise JA, Swerlow H, Mak A, Guthrie C (1986) Small nuclear RNAs from Saccharomyces serevissiae. Unexpected diversity in abundance, size and molecular complexity. Proc Natl Acad Sci 83:8097–9001

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JR, Pikielny CW, Rosbash M (1984) In vivo characterization of yeast mRNA processing intermediates. Cell 39:603–610

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Wall R (1480) A mechanism for RNA splicing. Proc Natl Acad Sci 77:1877–1879

    Article  Google Scholar 

  • Rosbash M, Harris PKW, Woolford JL, Teem JL (1981) The effect of temperature sensitive ma mutants of the transcription products from cloned ribosomal protein genes of yeast. Cell 24:679–686

    Article  PubMed  CAS  Google Scholar 

  • Ruby SW, Abelson J (1988) An early and heirarchical role of Ul small nuclear ribonucleoprotein in spliceosome assembly. Science 242:1028–1035

    Article  PubMed  CAS  Google Scholar 

  • Ruskin’ B, Green MR (1985) Specific and stable intron-factor ineractions are established early during in vitro pre-mRNA splicing. Cell 43:131–142

    Article  Google Scholar 

  • Ruskin B, Zamore PD, Green MR (1988) A factor U2AF is required for U2 snRNP binding and splicing complex assembly. Cell 52:207–219

    Article  PubMed  CAS  Google Scholar 

  • Rymond BC, Rosbash M (1985) Cleavage of 5’-splice site and lariat formation are independent of 3’-splice site in yeast mRNA splicing. Nature 317:735–737

    Article  PubMed  CAS  Google Scholar 

  • Rymond BC, Rosbash M (1988) A chemical modification/interference study of yeast pre-rnRNA spliceosome assembly and splicing. Genes Dev 2:428–439

    Article  PubMed  CAS  Google Scholar 

  • Rymond BC, Torrey DD, Rosbash M (1987) A novel role for the 3’ region of introns in pre-mRNA splicing of Saccharomyces serevisiae. Genes Dev 1:238–246

    Article  PubMed  CAS  Google Scholar 

  • Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15:7155–7174

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (1987) Splicing of messenger RNA precursors. Science 235:766–771

    Article  PubMed  CAS  Google Scholar 

  • Siliciano PG, Jones MH, Guthrie C (1987a) Saccharomyces cerevisiae has a U 1 like small nuclear RNA with unexpected properties. Science 237:1484–1487

    Article  CAS  Google Scholar 

  • Siliciano PG, Brow DA, Roiha H, Guthrie C (1987b) An essential snRNA from S. cerevisiae has properties predicted for U4 including interaction with U6 like snRNA. Cell 50:585–592

    Article  CAS  Google Scholar 

  • Soltyk A, Tropak M, Friesen JD (1984) Isolation and characterization of the RNA2, RNA4 and RNA11 genes of Saccharomyces cerevisiae. J Bacteriol 160:1093–1100

    PubMed  CAS  Google Scholar 

  • Tazi J, Alibert C, Temsamani J, Reveillaud I, Cathala G, Brunel C, Jeanteur P (1986) A protein that specifically recognises the 3’-splice site of mammalian pre-mRNA introns is associated with a small nuclear ribonucleoprotein. Cell 47:755–766

    Article  PubMed  CAS  Google Scholar 

  • Teem JL, Rodrigues JR, Tung L, Rosbash M (1983) The rna2 mutation affects the processing of actin mRNA as well as ribosomal protein mRNAs. Mol Gen Genet 192:101–103

    Article  PubMed  CAS  Google Scholar 

  • Vijayraghavan U, Parker R, Tamm J, limura I, Rossi J, Guthrie C (1986) Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway particularly assembly of the spliceosome. EMBO J 5:1683–1695

    PubMed  CAS  Google Scholar 

  • Warner JR (1987) Applying genetics to the splicing problem. Genes Dev 1:1–3

    Article  PubMed  CAS  Google Scholar 

  • Warner JR, Udem SA (1972) Temperature sensitive mutations affecting ribosome synthesis in Saccharomyces cerevisiae. J Mol Biol 65:243–257

    Article  CAS  Google Scholar 

  • Wieringa B, Hofer E, Weissmann C (1984) A minimal intron length but no specific internal sequence is required for splicing the large rabbit (i-globin intron. Cell 37:915–925

    Article  PubMed  CAS  Google Scholar 

  • Zhuang Y, Weiner AM (1986) A compensatory base change in U 1 snRNA supres ses a 5’-splice site mutation. Cell 46:827–835

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vijayraghavan, U., Abelson, J. (1989). Pre-mRNA Splicing in Yeast. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83709-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83709-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83711-1

  • Online ISBN: 978-3-642-83709-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics