Skip to main content

Mammalian Ribosomal Gene Transcription

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 3))

Abstract

Ribosomal RNA genes belong to the most actively transcribed genes of the cell. Actually, transcription of ribosomal DNA (rDNA) constitutes about 50% of cellular RNA syntheses. This extraordinarily high transcriptional activity reflects the need of the cell to produce more than a million ribosomes per cell cycle. The very efficient and coordinated transcription of these genes ensures the delicately balanced constitution of the protein biosynthesis machinery. Because of the requirement of ribosomes to support translation, the cellular machinery responsible for rRNA synthesis is designed to respond to a wide variety of specific signals so that these genes can be expressed in a controlled fashion. For example, the synthesis of rRNA is sensitive to a variety of physiological conditions such as the nutrient state, the phase of the cell cycle, the state of proliferation, and viral infection. In fact, elevation in rRNA synthesis appears to be one of the earliest biochemical events occurring after mitogenic stimulation of cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartsch I, Schonberg C, Grummt I (1987) Evolutionary changes of sequences and factors that direct transcription termination of human and mouse ribosomal genes. Mol Cell Biol 7: 2521–2529

    PubMed  CAS  Google Scholar 

  • Bartsch I, Schoneberg C. Grummt I (1988) Purification and characterization of Tin, a factor mediating termination of mouse rDNA transcription. Mol Cell Biol 8: 3891–3897

    PubMed  CAS  Google Scholar 

  • Buttgereit D, Pflugfelder G, Grummt I (1985) Growth-dependent regulation of rRNA synthesis is mediated by a transcription initiation factor ( TIF-IA ). Nucleic Acids Res 13: 8165–8179

    Article  PubMed  CAS  Google Scholar 

  • Cassidy BG, Yang-Yen H-F, Rothblum LI (1987) Additional RNA polymerase I initiation site within the nontranscribed spacer region of the rat rRNA gene. Mol Cell Biol 7: 2388–2396

    PubMed  CAS  Google Scholar 

  • Clos J, Nonnann A, Ohrlein A, Grummt I (1986a) The core promoter of mouse rDNA consists of two functionally distinct domains. Nucleic Acids Res 14: 7581–7595

    Article  PubMed  CAS  Google Scholar 

  • Clos J, Buttgereit D, Grummt I (1986b) A purified transcription factor ( TIF-IB) binds to essential sequences of the mouse rDNA promoter. Proc Natl Acad Sci USA 83: 604–608

    Article  PubMed  CAS  Google Scholar 

  • Croce CM, Talavera A, Basilico C, Miller OJ (1977) Suppression of mouse ribosomal RNA in mouse-human hybrids segregating mouse chromosomes. Proc Natl Acad Sci USA 74: 694 697

    Google Scholar 

  • Gokal PK, Cavanaugh AH, Thompson EA (1986) The effects oc cycloheximide upon transcription of rRNA, 55 RNA and tRNA genes. J Biol Chem 261: 2536–2541

    PubMed  CAS  Google Scholar 

  • Grummt I (1981) Specific transcription of mouse ribosomal DNA in a cell-free system that mimics control in vivo. Proc Natl Acad Sci USA 78: 727–731

    Article  PubMed  CAS  Google Scholar 

  • Grummt I (1982) Nucleotide sequence requirements for specific initiation of transcription by RNA polymerase I. Proc Natl Acad Sci USA 79: 6908–6911

    Article  PubMed  CAS  Google Scholar 

  • Grummt I, Skinner JA (1985) Efficient transcription of a protein coding gene from the RAN polymerase I promoter in transfected cells. Proc Nail Acad Sci USA 82: 722–726

    Article  CAS  Google Scholar 

  • Grummt I, Roth E, Paule M (1982) Ribosomal RNA transcription in vitro is species-specific. Nature 296: 173–174

    Article  PubMed  CAS  Google Scholar 

  • Grummt I, Maier U, Öhrlein A, Hassouna N, Bachellerie J-P (1985) Transcription of mouse rDNA terminates downstream of the 3’end of 28S RNA and involves the interaction of factors with repeated sequences in the 3’spacer. Cell 43: 801–810

    Article  PubMed  CAS  Google Scholar 

  • Grummt I, Rosenbauer H, Niedermeyer I, Maier U, Öhrlein A (1986a) A repeated 18 bp sequence motif in the mouse rDNA spacer mediates binding of a nuclear factor and transcription termination. Cell 45: 837–846

    Article  PubMed  CAS  Google Scholar 

  • Grummt I, Kuhn A, Bartsch I, Rosenbauer H (1986) A transcription terminator located upstream of the mouse rDNA initiationsite affects rRNA synthesis. Cell 47: 901–911

    Article  PubMed  CAS  Google Scholar 

  • Grummt I, Clos J, Bartsch I, Hannappel M (1988) Isolation and characterization of factors mediating initiation and termination of mouse ribosomal gene transcription. In: Grabla J (ed) UCLA Symposia on Molecular and Cellular Biology, Vol 95,. Allan R. Liss New York

    Google Scholar 

  • Haltiner MM, Smale ST, Tjian RT (1986) Two distinct promoter elements in the human ribosomal RNA gene identified by linker scanning mutagenesis. Mol Cell Biol 6: 227–235

    PubMed  CAS  Google Scholar 

  • Haltiner Jones MM, Learned RM, Tjian RT (1988) Analysis of clustered point mutations in the human ribosomal RNA gene promoter by transient expression in vivo. Proc Nati Acad Sci USA 85: 669–673

    Article  Google Scholar 

  • Henderson S, Sollner-Webb B (1986) A transcription terminator is a novel element of the promoter of the mouse ribosomal RNA gene. Cell 47: 891–900

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Nagamine M, Kominami R, Muramatsu M (1986) Formation of the transcription initiation complex on mammalian rDNA. Mol Cell Biol 6: 3418–3427

    PubMed  CAS  Google Scholar 

  • Kermekchiev MB, Grummt I (1987) Natural point mutations within rat rDNA transcription terminator elements reveal the functional importance of single bases for factor binding and termination. Nucleic Acids Res 15: 4131–4143

    Article  PubMed  CAS  Google Scholar 

  • Kuhn A, Grummt I (1987) A novel promoter in the mouse rDNA spacer is active in vivo and in vitro. EMBO J 6: 3487–3492

    PubMed  CAS  Google Scholar 

  • Kuhn A, Normann A, Bartsch I, Grummt I (1988) The mouse ribosomal gene terminator consists of three functionally separable sequence elements. EMBO J 7: 1497–1502

    PubMed  CAS  Google Scholar 

  • Kuhn A, Gnummt I (1989) 3’end Formation of mouse pre-rRNA involves both transcription termination and specific processing reaction. Genes Develop 3: 224–231

    Article  Google Scholar 

  • Labhard P, Reeder RH (1986) Characterization of three sites of RNA 3’end formation in the Xenopus ribosomal gene spacer. Cell 45: 431–443

    Article  Google Scholar 

  • Learned RM, Smale ST, Haltiner MM, Tjian RT (1983) Regulation of human ribosomal RNA transcription. Proc Nati Acad Sci USA 80: 3558–3562

    Article  CAS  Google Scholar 

  • Learned RM, Cordes S, Tjian RT (1985) Purification and characterization of a transcription factor that confers promoter specificity to human RNA polymerase L Mol Cell Biol 5: 1358–1369

    CAS  Google Scholar 

  • Learned RM, Learned TK, Haltiner MM, Tjian RT (1986) Human rRNA transcription is modulated by the coordinated binding of two proteins to an upstream control element. Cell 45: 847–857

    Article  PubMed  CAS  Google Scholar 

  • Long EO, Dawid I (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49: 727–764

    Article  PubMed  CAS  Google Scholar 

  • Miesfeld R, Amheim N (1984) Species specific rDNA transcription is due to promoter-specific binding factors. Mol Cell Biol 4: 221–227

    PubMed  CAS  Google Scholar 

  • Miller OL, Dev VG, Miller DA, Tantravahi R, Elicieri GL (1978) Transcription and processing of both mouse and Syrian hamster ribosomal RNA genes in individual somatic hybrid cells. Exp Cell Res 115: 457–460

    Article  PubMed  CAS  Google Scholar 

  • Miller KG, Sollner-Webb B (1981) Transcription of mouse rRNA genes by RNA polymerase I: in vitro and in vivo initiation and processing sites. Cell 27: 165–174

    Article  PubMed  CAS  Google Scholar 

  • Miller KG, Tower J, Sollner-Webb B (1985) A complex control region of the mouse rRNA gene directs accurate transcription initiation by RNA polymerase L Mol Cell Biol 5: 554–562

    CAS  Google Scholar 

  • Mishima Y, Financsek I, Kominami R, Muramatsu M. (1982) Fractionation and reconstitution of factors required for accurate transcription of mammalian ribosomal RNA genes: identification of a species-dependent initiation factor. Nucleic Acids Res 10: 6659–6669

    Article  PubMed  CAS  Google Scholar 

  • Moss T, Mitchelson K, De Winter R (1985) The promotion of ribosomal transcription in eukaryotes. Oxford Surveys on Eukaryotic Genes 2: 207–250

    PubMed  CAS  Google Scholar 

  • Nagamine M, Kishimoto T, Aono J, Kato H, Kominami R, Muramatsu M (1987) Sequestration analysis for RNA polymerase I transcription factors with various deletion and point mutations reveals different functional regions of the mouse rRNA gene promoter. Mol Cell Biol 7: 1486–1495

    PubMed  CAS  Google Scholar 

  • Platt T (1986) Transcription termination and the regulation of gene expression. Annu Rev Biochem 55: 339–372

    Article  PubMed  CAS  Google Scholar 

  • Skinner JA, Öhrlein A, Grummt I (1984) In vitro mutagenesis and transcriptional analysis of a mouse ribosomal promoter element. Proc Natl Acad Sci USA 81: 2137–2141

    Article  PubMed  CAS  Google Scholar 

  • Smale S.T, Tjian R. (1985) Transcription of Herpes Simplex Virus tk sequences under the control of wild-type and mutant RNA polymerase I promoters. Mol Cell Biol 5: 352–362

    PubMed  CAS  Google Scholar 

  • Sollner-Webb B, Tower J (1986) Transcription of cloned eukaryotic ribosomal RNA genes. Annu Rev Biochem 55: 801–830

    Article  PubMed  CAS  Google Scholar 

  • Sommerville J (1984) RNA polymerase I promoters and transcription factors. Nature 310: 189–190

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Dover GA (1986) Transcription of the tandem array of ribosomal DNA in Drosophila melanogaster does not terminate at any fixed point. EMBO J 5: 1267–1273

    PubMed  CAS  Google Scholar 

  • Tower J, Sollner-Webb B- (1987) Transcription of mouse rDNA is regulated by an activated subform of RNA polymerase I. Cell 50: 873–883

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JAK, Miller KG, Sollner-Webb B (1983) Dinucleotide primers facilitate convenient identification of the mouse ribosomal DNA transcription site. J Biol Chem 258: 13919–13928

    PubMed  CAS  Google Scholar 

  • Yamamoto O, Takakusa N, Mishima Y, Kominami R, Muramatsu M (1984) Determination of the promoter region of mouse ribosomal RNA gene by an in vitro transcription system. Proc Nall Acad Sci USA 81: 299–303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grummt, I. (1989). Mammalian Ribosomal Gene Transcription. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83709-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83709-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83711-1

  • Online ISBN: 978-3-642-83709-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics