Structural Optimization and Analysis with Program System CARAT

  • Stefan Kimmich
  • Ekkehard Ramm
Part of the Lecture Notes in Engineering book series (LNENG, volume 42)


Optimization and analysis of complex structures combining the finite element me-thod and methods of mathematical programming claim a high standard of the underlying program concept. When setting up the concept for the program system CARAT (Computer Aided Research and Analysis Tool) it was the aim to design an integral program for a wide range of structural optimization problems. An effective and direct formulation of the optimi-zation problem within the finite element method could be achieved in a completely incore running program with an interactive design environment.


Structural Optimization Sequential Quadratic Programming Finite Element Program Program Concept Structural Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    J. Sobieszczananski-Sobieski, “From a ‘black-box’ to a programming system”,in “Founda-tion of Structural Optimization: A unified Approach”, A.J. Morris (Ed.). Chichester: John Wiley & Sons Ltd., ch. 11, 1982.Google Scholar
  2. /2/.
    K.-U. Bletzinger, S. Kimmich, H. Stegmüller, Dokumentation für das Programmsystem CARAT, Mitteilung Nr.7 (unveröffentlicht), Institut für Baustatik, Universität Stutt-gart.Google Scholar
  3. /3/.
    K.-U. Bletzinger, S. Kimmich, H. Stegmüller, Eingabebeschreibung für das Programmsy-stem CARAT, Mitteilung Nr.8 (unveröffentlicht), Institut für Baustatik, Universität Stuttgart.Google Scholar
  4. /4/.
    H.P. Schwefel, Numerical Optimization of Computer Models. Chichester: John Wiley & Sons Ltd., 1981.MATHGoogle Scholar
  5. /5/.
    C. FIeury, “Shape Optimal Design by the Convex Linearization Method”, in “The Optimum Shape”, J.A. Bennett and M.E. Botkin (Ed.). New York: Plenum Press, 1986, pp. 297–327.Google Scholar
  6. /6/.
    K. Svanberg, “The Method of Moving Assymptotes - a new Method for Structural Optimi-zation”, Int. J. Num. Meth. Enging., Vol. 24, pp. 359–373, 1987.CrossRefMATHMathSciNetGoogle Scholar
  7. /7/.
    M.Bremiker, Entwicklung eines Optimierungsalgoritmus/ der generalisierten reduzierten Gradienten, Diplomarbeit, Inst, für Mechanik und Regelungstechnik, Universität (GH) Siegen, 1986.Google Scholar
  8. /8/.
    K. Schittkowski, “On the Convergence of a Sequential Quadratic Programming Method with an Augmented Lagrangian Line Search Function, math. Operationsforschung und Statistik, Ser. Optimization, Vol. 14, No. 2, pp. 197–216, 1983.CrossRefMATHMathSciNetGoogle Scholar
  9. /9/.
    K.-U. Bletzinger, E. Ramm, “Finite Elements and Structural Optimization - Some aspects of Problem Formulation”, presented at the GAMM-Seminar on “Discretization Me-thods and Structural Optimization”, Siegen, Oct. 5-7, 1988.Google Scholar
  10. /10/.
    K.-U. Bletzinger, “Optimale Tragwerke und CAD”, Beitrag zum 1. Intern. Symposium des SFB 230 “Natürliche Konstruktionen - Leichtbau in Architektur und Natur”, Stuttgart, Sept. 26-29, 1988.Google Scholar
  11. /11/.
    S.M. Bhandarkar, S. Azarm, W. Yu, “Designer Interaction in Shape optimal Design”, pre-sented at the ICES-Conference on Computational Engineering Science, Atlanta, Georgia, April 10-14, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • Stefan Kimmich
    • 1
  • Ekkehard Ramm
    • 1
  1. 1.Institut für BaustatikUniversität StuttgartStuttgartGermany

Personalised recommendations