Advertisement

Optimal Design of Viscoplastic Structures Under Dynamic Loadings

  • E. Cegielski
  • M. Życzkowski
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 42)

Abstract

Constitutive equations of viscoplasticity belong to the most complicated ones, hence optimal design of viscoplastic structures is usually performed in a purely numerical way, and the use of suitable discretization methods is necessary. In the present paper finite element method is used for optimal design of a rigid-viscoplastic bar under the impact of anial force. Minimal residual displa-cement is assumed as the design objective under the constraint of constant volume of the bar. Finite strains are allowed for and various shapes of force impulse are considered. Optimization of viscoplastic I-beams under dynamic loadings is also mentioned.

Keywords

Dynamic Loading Optimal Shape Residual Strain Finite Strain Optimal Structural Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Życzkowski, “Optimal structural design under creep conditions”, App1ied Mechanics Reviews, Vol.41, Dec. 1988.Google Scholar
  2. [2]
    E. Cegielski, “Problemy optymalnego kształtowania wspornikowej belki lepko- plastycznej przy obciąźeniu quasi-statycznym”, Mechanika Teor. Stos.. Vol.23, pp. 381–396, March/April 1985.MATHGoogle Scholar
  3. [3]
    E. Cegielski and M. Życzkowski, “Parametric optimization o-f viscoplastic bars under dynamic axial loading”, Rozprawv Inź., Vol. 29, pp. 27–37, Jan. 1981.MATHGoogle Scholar
  4. [4]
    E. Cegielski, “Optimization of rigid visco-plastic bars and beams under dynamic loadings”, Proc. IV Bulo. Conor. Mech., Varna, Vol. 1, pp. 484–489, Varna, 1981.Google Scholar
  5. [5]
    E. Cegielski and M. Życzkowski, “Optimization of some viscoplastic structures under variable loads”, Proc. Euromech Coll. 174 on Inelastic Structures. Palermo 1983, COGRAS, Palermo 1984, pp. 105–116.Google Scholar
  6. [6]
    M. Życzkowski and E. Cegielski, “Parametryczna optymalizacja belek sztywno - lepk:oplastycznych pod dziaianiem obciąźeń dynamicznych”, Archiwum Inź. Ladowej, Vol. 32, pp. 95–104, Jan. 1986.Google Scholar
  7. [7]
    M. Życzkowski, “Optimal structural design in rheology”, 12th Int. Congr. Theor. Appl. Mech., Stanford 1968; J. Appl. Mech.. Vol. 38, pp. 39–46, Jan. 1971.Google Scholar
  8. [8]
    M. Życzkowski and A. Gajewski, Optimal structural design under stability constraints, Kluwer Academic Press, Dordrecht/Boston/London, 1988.Google Scholar
  9. [9]
    M. Manjoine, “Influence of rate of strain and temperature on yield stress of mild steel”, J. Appl. Mech., Vol. 11, pp. 211–218, 1944.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • E. Cegielski
    • 1
  • M. Życzkowski
    • 1
  1. 1.Politechnika KrakowskaKrakówPoland

Personalised recommendations