Skip to main content

Applications in Non-Newtonian Fluid Mechanics

  • Chapter
Book cover Viscous Flow Applications

Part of the book series: Topics in Boundary Element Research ((TBOU,volume 5))

  • 316 Accesses

Abstract

The majority of the fluids dealt with by Engineers and Scientists, such as air, water and oils, can be regarded as Newtonian under most conditions of interest. However, in many cases the assumption of Newtonian behaviour is not valid and the rather more complex non-Newtonian response must be modelled. Such situations arise in the chemical processing industry and plastics processing industry. Non-Newtonian behaviour is also encountered in the mining industry, where slurries and muds are often handled, and in applications such as lubrication and biomedical flows. The simulation of non-Newtonian fluid flow phenomena is therefore of importance to industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bush, M.B. and Tanner, R.I., “Numerical Solution of Viscous Flows Using Integral Equations Methods,” Int. J. Num. Meth. Fluids, 3, 71–92 (1983).

    Article  MATH  Google Scholar 

  2. Phan-Thien. N., Goh, C.J. and Bush, M.B., “Viscous Flow Through a Corrugated Tube by the Boundary Element Method,” J. Applied Math. Phys. 36, 475–480 (1985).

    Article  Google Scholar 

  3. Kelmanson, M.A., “An Integral Equation Method for the Solution of Singular Slow Flow” Problems, J. Computational Physics, 51, 307–324 (1983).

    Article  Google Scholar 

  4. Bézine G., and Bonneau, D., “Integral Equation Method for the Study of Two-dimensional Stokes Flows,” Acta Mechanica, 41, 197–209 (1981).

    Article  MATH  Google Scholar 

  5. Coleman, C.J., “A Contour Integral Formulation of Plane Greeping Newtonian Flow,” Q. J. Mech. and Applied Math., 34, 453–464 (1981).

    Article  MATH  Google Scholar 

  6. Skerget P., and Alujevic, A., “The Solution of the Navier-Stokes Equations in Terms of Vorticityvelocity Variables by the Boundary Element Method,” Z. A. Gew. Math. Mech. 65, T245–T248 (1985).

    Google Scholar 

  7. Onishi, K., Kuroki T., and Tanaka, M., “An Application of Boundary Element Method to Incompressible Laminar Viscous Flows,” Engineering Analysis, 1, 122–127 (1984).

    Article  ADS  Google Scholar 

  8. Wu J.C., and Rizk, Y.M., “Integral Representation Approach for Time Dependent Viscous Flows,” Lecture Notes in Physics, 90, Springer-Verlag, Berlin, 1979.

    Google Scholar 

  9. Tasaka N., and Onishi, K., “Boundary Integral Equation Formulations for Steady Navier-Stokes Equations Using the Stokes Fundamental Solutions,” Engineering Analysis, 2, 128–132 (1985).

    Article  ADS  Google Scholar 

  10. Onishi, K., Kuroki T., and Tanaka, M., “Boundary Element Method for Laminar Viscous Flow and Convective Diffusion Problems,” Topics in Boundary Element Research Vol. 2, Brebbia, C.A., (ed), Springer-Verlag, Berlin, 1985.

    Google Scholar 

  11. Batchelor, G.K., “An Introduction to Fluid Dynamics,” Cambridge University Press, Cambridge, 1967.

    Google Scholar 

  12. Bird, R.B., Armstrong R.C., and Hassager, O., “Dynamics of Polymeric Liquids.” Vol. 1. Fluid Mechanics, J. Wiley and Sons, New York, 1977.

    Google Scholar 

  13. Walters, K., “Rheometry,” Chapman and Hall, London, 1975.

    Google Scholar 

  14. Tanner, R.I., “Engineering Rheology,” Oxford University Press, 1985.

    Google Scholar 

  15. Ferry, J.D., “Viscoelstic Properties of Polymers,” 3rd ed., John Wiley and Sons, New York, 1980.

    Google Scholar 

  16. Bird R.B., and Curtiss, C.F., “Fascinating Polymeric Liquids,” Physics Today, January, 3, 36–43 (1984).

    Google Scholar 

  17. Meissner, J., Basic Parameters, Melt Rheology, Processing and End Use Properties of Three Similar Low Density Polyethylene Samples, Pure Applied Chemistry, 42, 553–612 (1975).

    Article  Google Scholar 

  18. Laun, J.M., and Munstedt, H., “Elongational Behaviour of a Low Density Polyethylene Melt,” Rheologica Acta, 17, 415–425 (1978).

    Article  Google Scholar 

  19. Bush, M.B., Tanner R.I., and Phan-Thien, N., “A Boundary Element Investigation of Extrudate Swell,” J. Non-Newtonian Fluid Mechanics, 18, 143–162 (1985).

    Article  MATH  Google Scholar 

  20. Phan-Thien, N., and Tanner, R.I., “A New Constitutive Equation Derived from Network Theory,” J. Non-Newtonian Fluid Mechanics, 2, 353–365 (1977).

    Article  Google Scholar 

  21. Phan-Thien, N., “A Nonlinear Network Viscoelastic Model,” J. Rheology, 22, 259–283 (1978).

    Article  ADS  MATH  Google Scholar 

  22. Leonov, A.I., “Nonequilibrium Thermodynamics and Rheology of Viscoelastic Polymer Media,” Rheologica Acta, 15, 85–98 (1976).

    Article  MATH  Google Scholar 

  23. Leonov, A.I., Lipkina, E.H., Paskhin E.D., and Prokunin, A.N., “Theoretical and Experimental Investigation of Shearing in Elastic Polymer Liquids,” Rheologica Acta, 15, 411–426 (1976).

    Article  MATH  Google Scholar 

  24. Larson, R.G., “Elongational Flow Predictions of the Leonov Constitutive Equation,” Rheologica Acta, 22, 435–448 (1983).

    Article  MATH  Google Scholar 

  25. Sugeng, F., Phan-Thien, N., and Tanner, R.I., A Study of Non-isothermal Non-Newtonian Extrudate Swell by a Mixed Boundary Element and Finite Element Method, J. Rheology, 31, 37–58 (1987).

    Article  ADS  Google Scholar 

  26. Crochet, M.J., and Keunings, R., “Die Swell of a Maxwell Fluid: numerical prediction,” J. Non-Newtonian Fluid Mechanics, 7, 199–212 (1980).

    Article  Google Scholar 

  27. Crochet, M.J., and Keunings, R., “On Numerical Die Swell Calculation,” J. Non-Newtonian Fluid Mechanics, 10, 85–94 (1982).

    Article  MATH  Google Scholar 

  28. Bush, M.B., Milthorpe, J.F., and Tanner R.I., “Finite Element and Boundary Element Methods for Extrusion Computations,” J. Non-Newtonian Fluid Mechanics, 16, 37–51 (1984).

    Article  MATH  Google Scholar 

  29. Bush, M.B., and Phan-Thien, N., “Drag Force on a Sphere in Creeping Motion Through a Carreau Model Fluid,” J. Non-Newtonian Fluid Mechanics, 16, 303–313 (1984).

    Article  MATH  Google Scholar 

  30. Brebbia, C.A., “The Boundary Element Method for Engineers,” Pentech Press, London, 1980.

    Google Scholar 

  31. Banerjee, P.K., and Butterfield, R., “Boundary Element Methods in Engineering Science,” McGraw-Hill, London, 1981.

    MATH  Google Scholar 

  32. Ladyzhenskaya, O.A., “The Mathematical Theory of Viscous Incompressible Flow,” Gordon and Breach, U.S.A., 1963.

    Google Scholar 

  33. Youngren, G.K., and Acrivos, A., “Stokes Flow Past a Particle of Arbitrary Shape: a Numerical Method of Solution,” J. Fluid Mechanics, 69, 377–403 (1975).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Coleman, C.J., “On the Use of Boundary Integral Methods in the Analysis of Non-Newtonian Fluid Flow,” J. Non-Newtonian Fluid Mechanics, 16, 347–355 (1984).

    Article  MATH  Google Scholar 

  35. Coleman, C.J., “A Finite Element Routine for Analysing Non-Newtonian Flows.” Part II: The Extrusion of a Maxwell Fluid, J. Non-Newtonian Fluid Mechanics, 8, 261–270 (1981).

    Article  MATH  Google Scholar 

  36. Tuna, N.Y., and Finlayson, B.A., “Exit Pressure Calculations from Numerical Extrudate Swell Results,” J. Rheology, 28, 79–93 (1984).

    Article  ADS  Google Scholar 

  37. Caswell, B., and Viriyayuthakom, M., “Finite Element Simulation of Die Swell for a Maxwell Fluid,” J. Non-Newtonian Fluid Mechanics, 12, 13–29 (1983).

    Article  MATH  Google Scholar 

  38. Luo, X-L., and Tanner, R.I., “A Streamline Element Scheme for Solving Viscoelastic Flow Problems.” Part II: Integral constitutive models, J. Non-Newtonian Fluid Mechanics, 22, 61–89 (1986).

    Article  MATH  Google Scholar 

  39. Sugeng, F., Phan-Thien, N., and Tanner, R.I., “A Boundary Element Investigation of the Pressure-hole Effect,” J. Rheology, 32, 215–234 (1988).

    Article  ADS  Google Scholar 

  40. Chhabra, R.P., and Uhlherr, P.H.T., “Creeping Motion of Spheres Through Shear-thinning Elastic Fluids Described by the Carreau Viscosity Equation,” Rheologica Acta, 19, 187–195 (1980).

    Article  Google Scholar 

  41. Gu Dazhi and Tanner, R.I., “The Drag on a Sphere in a Power-law Fluid,” J. Non-Newtonian Fluid Mechanics, 17, 1–12 (1985).

    Article  MATH  Google Scholar 

  42. Cho, Y.I., and, Harnett, J.P., “Drag Coefficients of a Slowly Moving Sphere in Non-Newtonian Fluids, ” J. Non-Newtonian Fluid Mechanics, 12, 243–247 (1983).

    Article  MATH  Google Scholar 

  43. Crochet, M.J., and Keunings, R., “Finite Element Analysis Die Swell of a Highly Elastic Fluid,” J. Non-Newtonian Fluid Mechanics, 10, 339–356 (1982).

    Article  MATH  Google Scholar 

  44. Bush, M.B., Boundary Element Simulation of Polymer Extrusion Processes,“ Engineering Analysis, 4, 7–14 (1987).

    Article  Google Scholar 

  45. Tanner, R.I., “A Theory of Die Swell,” J. Polymer Science, A8, 2067–2078 (1970).

    ADS  Google Scholar 

  46. Phuoc, H.B., and Tanner, R.I., “Thermally Induced Extrudate Swell,” J. Fluid Mechanics, 98, 253–271 (1980).

    Article  ADS  MATH  Google Scholar 

  47. Luo, X.-L., and Tanner, R.I., “Finite Element Simulation of Long and Short Circular Die Extrusion Experiments Using Integral Models,” Int. J. Num. Meth. Eng., 25, 9–22 (1988).

    Article  MATH  Google Scholar 

  48. Cruse, T.A., Snow, D.W., and Wilson, R.B., “Numerical Solutions in Axisymmetric Elasticity,” Comp. Struct., 7, 445–451 (1977).

    MathSciNet  MATH  Google Scholar 

  49. Kermanidis, T., “A Numerical Solution for Axially Symmetrical Elasticity Problems,” Int. J. Solids Struct., 11, 493–500 (1975).

    Article  MATH  Google Scholar 

  50. Danson, D.J., “A Boundary Element Formulation of Problems in Linear Isotropic Elasticity with Body Forces,” Boundary Element Methods, Brebbia, C.A., (ed), Springer-Verlag, Berlin, 1981.

    Google Scholar 

  51. Bush, M.B., and Phan-Thien, N., “Three Dimensional Viscous Flows with a Free Surface: Flow out of a Long Square Die,” J. Non-Newtonian Fluid Mechanics, 18, 211–218 (1985).

    Article  MATH  Google Scholar 

  52. Tran-Cong, T., and Phan-Thien, N., “Three Dimensional Study of Extrusion Processes by Boundary Element Method.” Part I. An Implementation of High Order Elements and Some Newtonian Results, Rheologica Acta, 27, 21–30 (1988).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Bush, M.B. (1989). Applications in Non-Newtonian Fluid Mechanics. In: Brebbia, C.A. (eds) Viscous Flow Applications. Topics in Boundary Element Research, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83683-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83683-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83685-5

  • Online ISBN: 978-3-642-83683-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics