Skip to main content

Natural and Forced Convection Simulation Using the Velocity-Vorticity Approach

  • Chapter
Viscous Flow Applications

Part of the book series: Topics in Boundary Element Research ((TBOU,volume 5))

Abstract

The partial differential equations set, governing the laminar motion of viscous incompressible fluid is known as nonlinear Navier-Stokes equation. They constitute the statement of the basic conservation ballance of mass, momentum, and energy, applied to a control volume, i.e. the Eulerian description. This equation system is generally considered to be the fundamental description for all laminar as well as for turbulent flows, although some statistical averaging procedure is needed (e.g. Reynolds equations for turbulence) to simulate numerically the flow at high Re number values due to the enormous computational effort required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brebbia, C.A., “The Boundary Element Method for Engineers.” Pentech Press, London, 1978.

    Google Scholar 

  2. Brebbia, C.A., Telles, J.F.C., Wrobel, L.C., “Boundary Element Methods — Theory and Applications.” Springer-Verlag, New York, 1984.

    Google Scholar 

  3. Brebbia, C.A., Skerget, P., “Time Dependent Diffusion Convection Problems Using Boundary Elements.” 3rd. Int. Conf. on Numerical Methods in Laminar and Turbulent Flows. Seattle, 1983.

    Google Scholar 

  4. Betts, P.L., Haroutunian, V.A., “A Stream Function Finite Element Solution for Two-Dimensional Natural Convection with Accurate Representation of Nusselt Number Variation Near a Corner.” Int. J. Num. Meth. in Fluids, 3, 605–622 (1983).

    Article  ADS  MATH  Google Scholar 

  5. Backer, A.J., “Finite Element Computational Fluid Mechanics.” Hemisphere, New York, 1983.

    Google Scholar 

  6. De Vahl Davis, G., Jones, I.P. “Natural Convection in a Square Cavity: A Comparison Exercise.” Int. J. Num. Meth. in Fluids, 3, 249–264 (1983).

    Article  ADS  MATH  Google Scholar 

  7. De Vahl Davis, G., “Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution.” Int. J. Num. Meth. in Fluids, 3, 249–264 (1983).

    Article  ADS  MATH  Google Scholar 

  8. Hebeker, F.K., “Characteristics and Boundary Elements for Navier-Stokes Flows.” 9th Int. Conf. on Boundary Element Method. Stuttgart. Springer-Verlag, Berlin, 1987.

    Google Scholar 

  9. Onishi, K., Kuroki, T., Tanaka, M., Boundary, Element Method for Laminar Viscous Flow and Convective Diffusion Problems.“ Chap. 8, Topics in Boundary Element Research, Vol. 2, pp. 209–229. Springer-Verlag, Berlin, 1985.

    Google Scholar 

  10. Rizk, Y., “An Integral Representation Approach for Time Dependent Viscous Flows.” PhD Thesis, Georgia Institute of Technology, 1980.

    Google Scholar 

  11. Roache, P.J., “Computational Fluid Dynamics.” Hermosa Publ., 1982.

    Google Scholar 

  12. Schnipke, R.J., Rice, J.G., “A Finite Element Method for Free and Forced Convection Heat Transfer.” Int. J. Num. Meth. in Eng., 24, 117–128 (1987).

    Article  Google Scholar 

  13. Schmidt, G., “On Spline Collocation for Singular Integral Equations.” Math. Nachrichten, 111, 177–196 (1983).

    Article  MATH  Google Scholar 

  14. Skerget, P., Brebbia, C.A., “The Solution of Convective Problems in Laminar Flow.” 5th Int. Conf. on Boundary Element Method, Hiroshima, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  15. Skerget, P., Alujevic, A., Brebbia, C.A., “The Solution of Navier-Stokes Equations in Terms of Vorticity-Velocity Variables by Boundary Elements.” 6th Int. Conf. on Boundary Element Method, QE-2, Southampton-New York, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  16. Skerget, P., Alujevic, A., Brebbia, C.A., “Analysis of Laminar Flows With Separation Using BEM.” 7th Int. Conf. on Boundary Element Method, Como, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  17. Skerget, P., Alujevic, A., Brebbia, C.A., “Vorticity-Velocity-Pressure Boundary Integral Formulation.” 8th Int. Conf. on Boundary Element Method, Tokyo, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  18. Skerget, P., Alujevic, A., Brebbia, C.A., “Analysis of Laminar Fluid Flows by Boundary Elements.” 4th Int. Conf. on Numerical Methods in Laminar and Turbulent Flows, Pineridge Press, Swansea, 1985.

    Google Scholar 

  19. Skerget, P., Alujevic, A., Brebbia, C.A., “BEM for Laminar Motion of Isochoric Viscous Fluid.” 2nd BETECH Conf. Cambridge/Mass., Springer-Verlag, Berlin, 1986.

    Google Scholar 

  20. Skerget, P., Alujevic, A., Brebbia, C.A., “Nonlinear Transport Problems in Fluids by Boundary Elements.” 3rd Int. Conk’. on Numerical Methods in Nonlinear Problems, Dubrovnik, 1986.

    Google Scholar 

  21. Skerget, P., Alujevic, A., Brebbia, C.A., Kuhn, G., “Boundary Elements for Mixed Convection Flow Problems.” 3rd Int. Conf. on BETECH, Rio de Janeiro, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  22. Skerget, P., Kuhn, G., Alujevic, A., “Analysis of Mixed Convection Flow Problems by BEM.” Z. Angew. Math. Mech., 68, (1988).

    Google Scholar 

  23. Skerget, P.; Alujevic, A.; Kuhn, G., Brebbia, C.A., “Natural Convection Flow Problems by BEM.” 9th Int. Conf. on Boundary Element Method, Stuttgart, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  24. Stevens, W.N.R., “Finite Element Stream Function-Vorticity Solution of Steady Laminar Natural Convection.” Int. J. Num. Meth. Fluids, 2, 349–366 (1982).

    Article  MATH  Google Scholar 

  25. Taylor, C., Hughes, T.G., “Finite Element Programming of the Navier-Stokes Equations.” Pineridge Press, Swansea, 1981.

    Google Scholar 

  26. Wahbah, N.M., “Computation of Internal Flows With Arbitrary Boundaries Using the Integral Representation Method.” School of Aerospace Engineering, Georgia Inst. of Technology, DAAG 29–75-G-0147, 1975.

    Google Scholar 

  27. Tosaka, N., Kakuda, K., “Numerical Simulation for Incompressible Viscous Flow Problems Using the Integral Equation Methods” 8th Int. Conf. on Boundary Element Method, Tokyo, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  28. Tosaka, N., Fukushima, N., “Integral Equation Analysis of Laminar Natural Convection Problems.” 8th Int. Conf. on Boundary Element Method, Tokyo, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  29. Tosaka, N., Kakuda, K., “Numerical Simulations of Laminar and Turbulent Flows by Using an Integral Equation.” 9th Int. Conf. on Boundary Element Method, Stuttgart, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  30. Wendland, W.L., “Asymptotic Accuracy and Convergence for Point Collocation Methods.” Topics in Boundary Element Research, Vol. 2, pp. 230–250. Springer-Verlag, Berlin, 1985.

    Google Scholar 

  31. Wu, J.C., Thompson, J.F., “Numerical Solution of Time Dependent Incompressible Navier-Stokes Equations Using an Integro-Differential Formulation.” Computers and Fluids, 1, 197–215 (1973).

    Article  MATH  Google Scholar 

  32. Wu, J.C., “Problems of General Viscous Flow.” Developments in Boundary Element Method. Vol. 2, Chap. 2, Elsevier Appl. Sci. Publ., London and New York, 1982.

    Google Scholar 

  33. Wu, J.C., Rizk, Y.M., Sankar, N.L., “Problems of Time Dependent Navier-Stokes Flow.” Developments in Boundary Element Methods, Vol. 3, Chap. 6, Elsevier Appl. Sci. Publ., London and New York, 1984.

    Google Scholar 

  34. Yang, C.T., Atluri, S.N., “An Assumed Deviatoric Stress-Pressure-Velocity Mixed Finite Element Method for Unsteady Convective Incompressible Viscous Flow.” Part II: Computational Studies. Int. J. Num. Meth. in Fluids, 4, 43–69 (1984).

    Article  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Skerget, P., Alujevic, A., Brebbia, C.A., Kuhn, G. (1989). Natural and Forced Convection Simulation Using the Velocity-Vorticity Approach. In: Brebbia, C.A. (eds) Viscous Flow Applications. Topics in Boundary Element Research, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83683-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83683-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83685-5

  • Online ISBN: 978-3-642-83683-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics