Advertisement

Boundary Element Methods for Eddy Current Problems

  • S. Kalaichelvan
  • J. D. Lavers
Part of the Topics in Boundary Element Research book series (TBOU, volume 6)

Abstract

An electromagnetic field problem is classified as being an eddy current or induction problem when relevant time rates of change are slow relative to the rate at which charge is transported within the conductor system. For such problems, diffusion processes rather than wave propagation dominate. This type of problem is of considerable practical interest since it describes a broad range of important industrial applications (e.g. electric machines, nondestructive testing, electromagnetic confinement, geophysical e.m. prospecting etc.).

Keywords

Boundary Element Method Singular Integral Boundary Integral Equation Collocation Point Triangular Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stoll, R.L., “Numerical Method of Calculating Eddy Currents in Nonmagnetic Conductors”, Proc. IEE, 114, pp. 775–780, 1967.Google Scholar
  2. 2.
    Reichert, K., “A Numerical Method to Calculate Induction Heating Installations”, Elektrowaerme Int., 26, pp. 113–123, 1968.Google Scholar
  3. 3.
    Silvester, P.P., “The Accurate Calculation of Skin Effect in Conductors of Complicated Shape”, IEEE Trans. P.wer App. & Syst., PAS-87, pp. 735–742, 1968.Google Scholar
  4. 4.
    Dudley, R.F., Burke, P.E., “The Prediction of Current Distribution in Induction Heating Installations”, IEEE Trans. Ind. Appl., IA-8, pp. 565–571, 1972.Google Scholar
  5. 5.
    Silvester, P.P., Chari, M.V.K., “Finite Element Solution of Saturable Magnetioc Field Problems”, IEEE Trans. Power App. & Syst., PAS-89, pp. 1642–1648, 1970.Google Scholar
  6. 6.
    Chari, M.V.K., Silvester, P.P., (eds.) Finite Elements in Electric and Magnetic Field Problems, New York: Wiley, 1980.Google Scholar
  7. 7.
    Konrad, A., “Eddy Currents and Modeling”, IEEE Trans. Magnetics, MAG-21, pp. 1805–1910, 1985.Google Scholar
  8. 8.
    Fawzi, T.H., Two-Dimensional and Quasi-Two-Dimensional Induction Problems, Ph.D. Diss., University of Toronto, 1973.Google Scholar
  9. 9.
    Fawzi, T.H., Burke, P.E., “Use of Surface Integral Equations for the Analysis of TM-Induction Problems”, FIProc. IEE, 121, pp. 1109–1116, 1974.Google Scholar
  10. 10.
    Fawzi, T.H., Burke, P.E., M. Fabiano-Alves, “Use of Surface Integral Equations for the Analysis of TE-Induction Problems”, Proc. IEE, 123, pp. 725–728, 1976.Google Scholar
  11. 11.
    Fawzi, T.H., Fabiano-Alves, M., Burke, P.E., “The Linear Travelling-Wave Induction Problem”, Int. J. Engng. Sci., 16, pp. 203–213, 1978.MATHCrossRefGoogle Scholar
  12. 12.
    Fawzi, T.H., Ali, K.F., Burke, P.E., “Boundary Integral Equations Analysis of Induction Devices with Rotational Symmetry”, IEEE Trans. Magnetics, MAG-19, pp. 36–44, 1983.Google Scholar
  13. 13.
    Fawzi, T.H., Ali, K.F., Burke, P.E., “Boundary Integral Equations Analysis of Induction Devices with Rotational Symmetry”, IEEE Trans. Magnetics, MAG-19, pp. 36–44, 1983.Google Scholar
  14. 14.
    Shao Keran, Zhou Keding, “Boundary Element Solutions to Transient Eddy Current Problems”, Engng. Anal., 1, pp. 182–187, 1984.CrossRefGoogle Scholar
  15. 15.
    Lean, M.H., “Application of Boundary Integral Equation Methods to Electromagnetics”, IEEE Trans. M.gnetics, MAG-21, pp. 1823–1828, 1985.Google Scholar
  16. 16.
    Lowther, D.A., Silvester, P.P., Computer-Aided Design in Magnetics, New York: Springer-Velag, 1986.Google Scholar
  17. 17.
    Emson, C.R.I., Simkin, J., “An Optimal Method for 3-D Eddy Currents”, IEEE Trans. Magnetics, MAG-19, pp. 2450–2452, 1983.Google Scholar
  18. 18.
    Simkin, J., “Eddy Current Modelling in Three Dimensions”, IEEE Trans. Magnetics, MAG-22, pp. 609–613, 1986.Google Scholar
  19. 19.
    Fawzi, T.H., Taher Ahmed, M., Burke, P.E., “On the Use of the Impedance Boundary Conditions in Eddy Current Problems”, IEEE Trans. Magnetics, MAG-21, pp. 1835–1840, 1985.Google Scholar
  20. 20.
    Taher Ahmed, M., Application of the Boundary Element Method and the Impedance Boundary Condition to T-W and 2-D Eddy Current Problems, Ph.D. Diss., University of Toronto, 1986.Google Scholar
  21. 21.
    Ali, K.F., Boundary Element Analysis of Single Layer and Multi Layer Induction Devices with Rotational Symmetry, Ph.D. Diss, Cairo University, 1983.Google Scholar
  22. 22.
    Ramadan Ahmed, M., A Boundary Element Method for Eddy Current Problems Having Rotational Symmetry, Ph.D. Diss., University of Toronto, 1987.Google Scholar
  23. 23.
    Stratton, J.A., Electromagnetic Theory, New York: McGraw-Hill, 1941.Google Scholar
  24. 24.
    Mueller, C., Foundations of the Mathematical Theory of Electromagnetic Waves, Berlin: Springer-Verlag, 1969.Google Scholar
  25. 25.
    Ramadan Ahmed, M., Lavers, J.D., “A Comparison of Boundary Integral Formulations for 2D Axisymmetric Eddy Current Problems”, IEEE Trans. Magnetics,MAG-24, 1988 (to appear).Google Scholar
  26. 26.
    Rucker, W.M., Richter, K.R., “Calculation of Two-Dimensional Eddy Current Problems with the Boundary Element Method”, IEEE Trans. Magnetics, MAG-19, pp. 2429–2432, 1883.Google Scholar
  27. 27.
    Lean, M.H., “Dual Simple-Layer Source Formulation for Two-Dimensional Eddy Current and Skin Effect Problems”, J. Appl. Phys., 57 (1), pp. 3844–3846, 1985.CrossRefGoogle Scholar
  28. 28.
    Zhou Pei-Bai, Lavers, J.D., “High Frequency Losses in Multi-Turn Coils Using a Boundary Element Model”, IEEE Trans. Magnetics, MAG-22, pp. 1060–1062, 1986.Google Scholar
  29. 29.
    Tozoni, O.V., Mayergoyz, I.D., Analysis of 3-Dimensional Electromagnetic Fields, Kiev USSR: Technika, 1974 (in Russian).Google Scholar
  30. 30.
    Mayergoyz, I.D., “Boundary Integral Equations of Minimum Order for the Calculation of Three-Dimensional Eddy Current Problems”, IEEE Trans. Magnetics, MAG-18, pp. 536–539, 1982.Google Scholar
  31. 31.
    Mayergoyz, I.D., “3-D Eddy Current Problems and the Boundary Element Method”, Proc. IMACS Int. Symp. Computational Electromagnetics, Pittsburgh, PA, 12–13 December, 1984.Google Scholar
  32. 32.
    Kalaichelvan, S., A Boundary Integral Equation Method for 3-Dimensional Eddy Current Problems, Ph.D. Diss, University of Toronto, 1987.Google Scholar
  33. 33.
    Hodgkins, W.R., Waddington, J.F., “The Solution of Three-Dimensional Induction Heating Problems Using an Integral Equation Method”, IEEE Trans. Magnetics, MAG-18, pp. 476–480, 1982.Google Scholar
  34. 34.
    Tsuboi, H., Misaki, T., “Three Dimensional Analysis of Eddy Current Distributions by the Boundary Element Method”, IEEE Trans. Magnetics, MAG-23, pp. 3044–3046, 1987.Google Scholar
  35. 35.
    Spivak, M., Calculus of Manifolds, W.A. Benjamin, 1965.Google Scholar
  36. 36.
    Bossavit, A., Verite, J.C., “A Mixed FEM-BIEM Method to Solve 3-D Eddy Current Problems”, IEEE Trans. Magnetics, MAG-18, pp. 431–435, 1982.Google Scholar
  37. 37.
    Silvester, P.P., “Construction of Triangular Finite Element Universal Matrices”, Int. J. Num. Meth. Engng., 12, pp. 237–244, 1978.MATHCrossRefGoogle Scholar
  38. 38.
    Paget, P.F., Elliot, D., “An Algorithm for the Numerical Evaluation of Certain Cauchy Principal Value Integrals”, Numer. Math., 19, pp. 373–385, 1972.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Hunter, D.B., “Some Gauss Type Formulae for the Evaluation of Cuachy Principal Value Integrals”, Numer. Math., 19, pp. 419–424, 1972.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Kutt, H.R., “The Numerical Evaluation of Principal Value Integrals by Finite Part Integration”, Numer. Math., 24, pp. 205–210, 1975.MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Theocaris, P.S., Ioakimidis, N.I., Kazantzakis, J.G., “On the Numerical Evaluation of Two-Dimensional Principal Value Integrals”, Int. J. Num. Meth. Engng., 15, pp. 629–634, 1979.MathSciNetCrossRefGoogle Scholar
  42. 42.
    Lee, S.W., Boersma, J., Law, C.L., Deschamps, G.A., “Singularity in Green’s Function and it’s Numerical Evaluation”, IEEE Trans. Ant. Prop., AP-28, pp. 311–317, 1980.Google Scholar
  43. 43.
    Miron, D.B., “The Singular Integral Problem on Surfaces”, IEEE Trans. Ant. Prop., AP-31, pp. 507–509, 1983.Google Scholar
  44. 44.
    Miron, D.B., “The Singular Integral Problem on Surfaces”, IEEE Trans. Ant. Prop., AP-31, pp. 507–509, 1983.Google Scholar
  45. 45.
    Li, H.B., Han, G.M., Mang, H.A., “A New Method for Evaluating Singular Integrals in Stress Analysis of Solids by the Direct Boundary Element Method”, Int. J. Num. Meth. Engng., 21, pp. 2071–2098, 1985.MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Kalaichelvan, S., Lavers, J.D., “Singularity Evaluation in Boundary Integral Equations of Minimum Order for 3-D Eddy Currents”, IEEE Trans. Magnetics, MAG-23, pp. 3053–3055, 1987.Google Scholar
  47. 47.
    Stroud, A.H., Approximate Calculation of Multiple Integrals, New York: Prentice Hall, 1971.Google Scholar
  48. 48.
    Kalaichelvan, S., Lavers, J.D., “On the Implementation of a Boundary Element Method for 3D Multiply Connected Eddy Current Problems” IEEE Trans. Magnetics,MAG-24, 1988 (to appear).Google Scholar
  49. 49.
    Lachat, J.C., Watson, J.O., “Effective Numerical Treatment of Boundary Integral Equations: A Formulation for 3-Dimensional Electrostatics”, Int. J. Num. Meth. Engng., 10, pp. 991–1005, 1976.MATHCrossRefGoogle Scholar
  50. 50.
    Staff, M., Electrodynamics of Electric Machines, Prague: Pub. House of Czech. Academy of Science, 1967.Google Scholar
  51. 51.
    Balchin, M.J., Davidson, J.A.M., “Numerical Method for Calculating Magnetic Flux and Eddy Currents in Three Dimensions”, Proc. IEE, 127, Pt. A, pp. 46–53, 1980.Google Scholar
  52. 52.
    Alden, R.T.H., Flow in Channel Furnaces, Ph.D. Diss., University of Toronto, 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • S. Kalaichelvan
  • J. D. Lavers

There are no affiliations available

Personalised recommendations