Basic Properties and Systematic Analysis of Switched-Capacitor Networks

  • Rolf Unbehauen
  • Andrzej Cichocki
Part of the Communications and Control Engineering Series book series (CCE)

Abstract

As we have already mentioned, linear switched-capacitor (SC) networks are composed of capacitors and operational amplifiers interconnected by an array of periodically operating switches. Such networks are very attractive because of their potential for high precision monolithic fabrication of frequency selective devices for telecommunications and electronic equipment applications. MOS SC networks are expected to replace active RC networks and to take over most of the applications which require integrated implementation, although in some cases they can be useful even without integration. The implementation and analysis of SC networks have received increasing attention in recent years. Theoretical analysis of such networks is considerably more difficult than analysis of analog networks. However, most of the methods known from classical analog and digital circuit theory are still applicable to the analysis of SC networks.

Keywords

fIlters Attenuation Beach Resis Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Sources for Further Reading

A. History of SC Filters

  1. 1.
    Maxwell, J. C.: A Treatise On Electricity and Magnetism. Oxford: Clarendon Press (1873) 374–377Google Scholar
  2. 2.
    Haard, E.; Savala, G.: Means for detecting and for generation of pulses. U.S. Patent No.12718621 v. 113.1953, first filed in Sweden March 12 (1952)Google Scholar
  3. 3.
    Cattermole, K. W.: Efficiency and reciprocity in pulse-amplitude modulation: Part 1–Principles. Proceedings of IEE Part B 105 (1958) 449–462Google Scholar
  4. 4.
    Fettweis, A.: Theorie des circuits a transfert resonant. Ph. D. thesis, University of Louvain, Belgium (1963)Google Scholar
  5. 5.
    Fettweis, A.: Theory of resonant-transfer circuits. Lecture Notes, NATO Advanced Study Inst. on Network and Switching Theory: Grignano, Italy Aug. (1966) also published in “Network and Switching Theory’ (ed. G. Biorci) Academie Press: New York (1968) 382–446Google Scholar
  6. 6.
    Poschenrieder, W.: Frequenzfilterung durch Netzwerke mit periodisch gesteuerten Schaltern. Proc. NTG-Fachtagung “Analyse und Synthese von Netzwerken” Stuttgart, W. Germany (1966) 221–237Google Scholar
  7. 7.
    Boite, R.; Thiran, J. P. V.: Synthesis of filters with capacitances, switches, and regenerating devices. IEEE Trans. Circuit Theory CT-15 (1968) 447–454CrossRefGoogle Scholar
  8. 8.
    Fraiture, L.; Neirynck, J. J.: Theory of unit-elements filters. Revue H.F. Tijdschrift 7 (1969) 325–340Google Scholar
  9. 9.
    Fettweis, A.: Theory of resonant transfer circuits and their applications to the realization of frequency selective networks. Proc. Summer School on Circuit Theory, Czechoslovak Academy of Sciences: Prague (1968)Google Scholar
  10. 10.
    Fettweis, A.: Realization of general network functions using the resonant-transfer principle. Archiv Elektr. Übertr. AE0–25 (1971) 295–303Google Scholar
  11. 11.
    Weinrichter, H.: Kondensator-Kommutator-Netzwerke. Archiv Elektr. Übertr. AE0–26 (1972) 293–305Google Scholar
  12. 12.
    Fettweis, A.: Filters met willekeurig gekozen dempingspolen en Tschebyschewkarkteristiek in het doorlaatgebiet“, Section 8, Tijdschrift van het Nederlands Radiogenootschap: Netherlands 25 (1960) 337–382Google Scholar
  13. 13.
    Orchard, H. J.: Inductorless filters. Electronics Letters 2 (1966) 224–225CrossRefGoogle Scholar
  14. 14.
    Baker, L.: Dynamic transfer networks. IEEE Circuits and Systems Magazine (1984) 24–26 and “Reminiscences on the invention of the switched capacitor networks”. IEEE Circuits and Systems Magazine (1984) 23Google Scholar
  15. 15.
    Fried, D. L.: Analog sample-date filters. IEEE J. Solid-State Circuits SC-7 (1972) 302–304CrossRefGoogle Scholar
  16. 16.
    Hosticka, B. J.; Brodersen, R. W.; Gray, P. R.: MOS sampled date recursive filters using switched capacitor integrators. IEEE J. Solid-State Circuits SC-12 (1977) 600–608CrossRefGoogle Scholar
  17. 17.
    Caves, J. T.; Copeland, M. A.; Rahim, Ch. F.; Rosenbaum, S. D.: Sampled analog filtering using switched capacitors as resistor equivalents. IEEE J Solid-State Circuits SC-12 (1977) 592–599CrossRefGoogle Scholar
  18. 18.
    Franks, L. E.; Sandberg, I. W.: An alternative approach to the realization of network transfer function: the N-path filter. Bell Syst. Tech. J. 39 (1960) 1321–1350Google Scholar
  19. 19.
    Fettweis, A.; Wupper, H.: A solution to the balancing problem in N-path filters. IEEE Trans. Circuits and Systems CT-18 (1971) 403–405Google Scholar
  20. 20.
    Fettweis, A.: Theory of stop-go N-path filters. Archiv Elektr. Übertr. AEÜ-25 (1971) 173–180MathSciNetGoogle Scholar
  21. 21.
    Wupper, H.: A modified N-path filter suited for practical realization. IEEE Trans. Circuits and Systems CAS-21 (1974) 449–456CrossRefGoogle Scholar
  22. 22.
    Ghaderi, M. B.; Ternes, G. C.; Nossek, J. A.: Switched-capacitor pseudo N-path filters. IEEE Proc. Int. Symposium on Circuits and Systems, Chicago USA (1981) 519–522Google Scholar
  23. 23.
    Temes, G. C.; Young, I. A.: An improved switched-capacitor integrator. Electronics Letters 14 (1978) 287–288CrossRefGoogle Scholar
  24. 24.
    Ternes, G. C.; Orchard, H. J.; Johanbegloo, M.: Switched-capacitor filter design using the bilinear z-transform. IEEE Trans. Circuits and Systems CAS-25 (1978) 1039–1044CrossRefGoogle Scholar
  25. 25.
    Nossek, J. A.; Weinrichter, H.: Comments on “switched-capacitor filter design using the bilinear z-transform”. IEEE Trans. Circuits and Systems CAS-28 (1981) 78–81CrossRefGoogle Scholar
  26. 26.
    Fettweis, A.: Digital filter structures related to classical filter networks. Archiv Elektr. Übertr. AE0–25 (1971) 79–89Google Scholar
  27. 27.
    Bruton, L. T.: Low-sensitivity digital ladder filters. IEEE Trans. Circuits and Systems CAS-22 (1975) 168–176CrossRefGoogle Scholar
  28. 28.
    Fettweis, A.: Basic principles of switched-capacitor filters using voltage inverter switches. Archiv Elektr. Übertr. AEÜ-33 (1979) 13–19Google Scholar
  29. 29.
    Fettweis, A.: Switched-capacitor filters using voltage inverter switches: further design principles. Archiv Elektr. Übertr. AE0–33 (1979) 107–114Google Scholar

B. Review Books and Tutorial Papers and Some Recent Trends in SC Filters

  1. 30.
    Brodersen, R. W.; Gray, P. R.; Hodges, D. A.: MOS switched-capacitor filters. Proceedings IEEE 67 (1979) 61–75CrossRefGoogle Scholar
  2. 31.
    Gray, P. R.; Hodges, D. A.; Brodersen, R. W.: Analog MOS integrated circuits. IEEE Press: New York (1980)Google Scholar
  3. 32.
    Fettweis, A.: Switched-capacitor filters: from early ideas to present possibilities. IEEE Proc. Int. Symposium on Circuits and Systems, Chicago USA (1981) 414–417Google Scholar
  4. 33.
    Vandewalle, J. (editor): Summer Course on Switched Capacitor Circuits. Kathoelike University Leuven, Belgium (1981)Google Scholar
  5. 34.
    Vandewalle, J.: A chronological list of references on switched capacitor circuits. Electrocomponents Science and Technology 9 (1982) 275–288Google Scholar
  6. 35.
    Schaumann, R.; Soderstrand, M. A.; Laker, K. R. eds.: Modern Active Filter Design. New York: IEEE Press (1981)Google Scholar
  7. 36.
    Temes, G. C.: MOS switched-capacitor filters — history and state of the art. Proc. European Conf. on Circuit Theory and Design ECCTD-81, The Hague, Netherlands (1981) 176–185Google Scholar
  8. 37.
    Gregorian, R.; Martin, K. W.; Ternes, G. C.: Switched-capacitor circuit design. Proceedings of IEEE 71 (1983) 941–966CrossRefGoogle Scholar
  9. 38.
    Liou, M. L.; Kuo, Y.-L.; Lee, C. F.: A tutorial on computer-aided analysis of switched-capacitor circuits. Proceedings of IEEE 71 (1983) 987–1005CrossRefGoogle Scholar
  10. 39.
    Moschytz, G. S. (editor): MOS Switched-Capacitor Filters: Analysis and Design. New York: IEEE Press (1984)Google Scholar
  11. 40.
    Tsividis, Y.: Principles of operation and analysis of switched-capacitor circuits. Proceedings of IEEE 71 (1983) 926–940CrossRefGoogle Scholar
  12. 41.
    Jenkins, W. K.: Observations on the evaluation of switched capacitor circuits IEEE Circuits and Systems Magazine (1983) 22–33Google Scholar
  13. 42.
    Weinrichter, H.: A note on some early work in the field of switched-capacitor networks. IEEE Circuits and Systems Magazine (1984) 3–8Google Scholar
  14. 43.
    Weinrichter, H.; Nossek, J. A.: Vergleich verschiedener Filterkonzepte. Hochintegrierte analoge Schaltungen. (editor B. Höfflinger) München: Oldenbourg Verlag (1987)Google Scholar
  15. 44.
    Tsividis, Y.; Antognetti, P. (eds): Design of MOS VLSI Circuits for Telecommunications. Englewood Cliffs: Prentice-Hall (1985)Google Scholar
  16. 45.
    Hasler, M.; Neirynck, J.: Electric Filters. Dedham MA: Artech House (1986)Google Scholar
  17. 46.
    Fettweis, A.: Wave digital filters: theory and practice. Proceedings of IEEE 74 (1986) 270–327CrossRefGoogle Scholar

C. Analysis of SC Networks

  1. 47.
    Kurth, C. F.; Moschytz, G. S.: Nodal analysis of switched-capacitor networks. IEEE Trans. Circuits and Systems CAS-26 (1979) 93–105MATHCrossRefGoogle Scholar
  2. 48.
    Kurth, C. F.; Moschytz, G. S.: Two-port analysis of switched-capacitor networks using four-port equivalent circuits in the z-domain. IEEE Trans. Circuits and Systems CAS-26 (1979) 166–180CrossRefGoogle Scholar
  3. 49.
    Brglez, F.: Exact nodal analysis of switched-capacitor networks with arbitrary switching sequences and general inputs–1. Conference Record of 12th Asilomar Conference on Circuits, Systems, Computers. Pacific Grove, CA, USA (1978) 679–683Google Scholar
  4. 50.
    Brglez, F.: Exact nodal analysis of switched-capacitor networks with arbitrary switching sequences and general inputs–Part II. IEEE Proc. Int. Symposium on Circuits and Systems, Tokyo, Japan (1979) 748–751Google Scholar
  5. 51.
    Hökenek, E.; Moschytz, G. S.: Analysis of general switched-capacitor networks using indefinite admittance matrix. IEE Proc. G. Electronic Circuits and Systems 127 (1980) 21–33CrossRefGoogle Scholar
  6. 52.
    Hökenek, E.; Moschytz, G. S.: Analysis of multiphase switched-capacitor (m.s.c.) networks using the indefinite admittance matrix (i.a.m.). IEE Proc. G. Electronic Circuits and Systems 127 (1980) 226–241CrossRefGoogle Scholar
  7. 53.
    Laker, K. R.: Equivalent circuits for the analysis and synthesis of switched capacitor networks. Bell. Syst. Tech. J. (1979) 729–769Google Scholar
  8. 54.
    Moschytz, G. S.; Brugger, U. W.: Signal-flow graph analysis of SC networks. IEE Proc. G. Electronic Circuits and Systems (1984) 72–85Google Scholar
  9. 55.
    Mulawka, J. J.; Moschytz, G. S.: A by-inspection analysis of SC networks using topological rules. IEE Proc. G. Electronic Circuits and Systems 132 (1985) 255–265CrossRefGoogle Scholar
  10. 56.
    Mulawka, J.; Osiowski, J.: Binodal graphs–a new approach to the representation and analysis of active RC OP networks. Proc. European Conf. on Circuit Theory and Design ECCTD-76, Genova, Italy (1976) 239–244Google Scholar
  11. 57.
    Moschytz, G. S.: Simplified analysis of switched capacitor networks. Electronics Letters 17 (1981) 975–977CrossRefGoogle Scholar
  12. 58.
    Moschytz, G. S.; Hosticka, B. J.: Transmission matrix of switched-capacitor ladder networks: application in active-filter design. IEE Proc. G. Electronic Circuits and Systems 127 (1980) 87–98CrossRefGoogle Scholar
  13. 59.
    Mulawka, J. J.: By-inspection analysis of switched-capacitor networks. Intern. Journal of Electronics 49 (1980) 359–373CrossRefGoogle Scholar
  14. 60.
    Moschytz, G. S.; Mulawka, J. J.: Direct analysis of stray-insensitive switched-capacitor networks using signal flow graphs. IEE Proc. G. Electronic Circuits and Systems 133 (1986) 145–153CrossRefGoogle Scholar
  15. 61.
    Zhou, Z.-X.: A simplified design-oriented analysis of switched-capacitor active filters. Int. J. Circuit Theory and Applications 12 (1984) 179–189CrossRefGoogle Scholar
  16. 62.
    Vlach, J.: Hand analysis of switched-capacitor networks. IEEE Circuits and Device Magazine (1986) 11–16Google Scholar
  17. 63.
    Cichocki, A.; Unbehauen, R.: Simplified analysis of arbitrary switched-capacitor networks. lEE Proc. G. Electronic Circuits and Systems 134 (1987) 45–53CrossRefGoogle Scholar
  18. 64.
    Davis, A. M.: Wave variable analysis of passive switched capacitor circuits. IEEE Proc. Int. Symposium on Circuits and Systems, Kyoto Japan (1985) 1161–1164Google Scholar
  19. 65.
    Scanlan, S. O.: Analysis and synthesis of switched-capacitor state-variable filters. IEEE Trans. Circuits and Systems CAS-28 (1981) 85–93CrossRefGoogle Scholar
  20. 66.
    Hasler, M. J.; Saghafi, M.; Kaelin, A.: Elimination of parasitic capacitances in switched-capacitor circuits by circuit transformations. IEEE Trans. Circuits and Systems CAS-32 (1985) 467–475MATHCrossRefGoogle Scholar
  21. 67.
    Raschke, R.: Analyse von Schalterkondensatorfiltern mit parasitären Elementen nach dem Spannungsumkehrprinzip. Archiv Elektr. Übertr. AEU-36 (1982) 119–123Google Scholar
  22. 68.
    Tsividis, Y.: A general form for the input-output difference equation of switched-capacitor networks. Int. J. Circuit Theory and Applications 11 (1983) 342–345MATHCrossRefGoogle Scholar
  23. 69.
    Martin, K.; Sedra, A. S.: Effects of the op amp finite gain and bandwidth on the performance of switched-capacitor filters. IEEE Trans. Circuits and Systems CAS-28 (1981) 822–829CrossRefGoogle Scholar
  24. 70.
    Geiger, R. L.; Sänchez-Sinencio, E.: Operational amplifier gain-bandwidth product effects on the performance of switched-capacitor networks. IEEE Trans. Circuit Systems CAS-29 (1982) 96–106CrossRefGoogle Scholar
  25. 71.
    Georgiev, V. I.; Stantchev, K. P.: Simple approach to analysis of switched-capacitor circuits with nonideal op-amps. Electronics Letters 22 (1986) 422–424CrossRefGoogle Scholar
  26. 72.
    Lee, K.-L.; Meyer, R. G.: Low-distortion switched-capacitor filter design techniques. IEEE J. Solid-State Circuits SC-20 (1985) 1103–1113CrossRefGoogle Scholar
  27. 73.
    Toth, L.; Simonyi, E.: Explicit formulas for analyzing general switched-capacitor networks. IEEE Proc. Int. Symposium on Circuits and Systems, San Jose USA (1986) 384–387Google Scholar
  28. 74.
    Nairn, D. G.; Sedra, A. S.: Circuit and design techniques for fully-differential switched-capacitor filters. IEEE Proc. Int. Symposium on Circuits and Systems, San Jose USA (1986) 603–606Google Scholar
  29. 75.
    Maloberti, F.; Montecchi, F.; Torelli, G.; Halasz, E.: Bilinear design of fully differential switched capacitor ladder filters. Proceedings of IEE 132 (1985) 266–272Google Scholar
  30. 76.
    Ghaderi, M. B.; Nossek, J. A.; Ternes, G. C.: Narrow-band switched-capacitor bandpass filters. IEEE Trans. Circuits and Systems CAS-29 (1982) 557–564CrossRefGoogle Scholar
  31. 77.
    Nossek, J. A.; Ternes, G. C.: Switched-capacitor filter design using bilinear element modeling. IEEE Trans. Circuits and Systems CAS-27 (1980) 481–491CrossRefGoogle Scholar
  32. 78.
    Martin, K.: Improved circuits for the realization of switched-capacitor filters. IEEE Trans. Circuits and Systems CAS-27 (1980) 237–244CrossRefGoogle Scholar
  33. 79.
    Ternes, G. C.; Haug, K.: Improved offset-compensation schemes for switched-capacitor circuits. Electronics Letters 20 (1984) 508–509CrossRefGoogle Scholar
  34. 80.
    Liou, M. L.; Kuo, Y.-L.: Exact analysis of switched capacitor circuits with arbitrary inputs. IEEE Trans. Circuits and Systems CAS-26 (1979) 213–223MathSciNetMATHCrossRefGoogle Scholar
  35. 81.
    Sun, Y.: Direct analysis of time-varying continuous and discrete difference equations with applications to nonuniformly switched-capacitor circuits. IEEE Trans. Circuits and Systems CAS-28 (1981) 93–100MATHCrossRefGoogle Scholar
  36. 82.
    Kuo, Y.-L.; Liou, M. L.; Kasinskas, J. W.: An equivalent circuit approach to the computer-aided analysis of switched capacitor circuits. IEEE Trans. Circuits and Systems CAS-26 (1979) 708–714MathSciNetMATHCrossRefGoogle Scholar
  37. 83.
    Tanaka, M.; Mori, S.: Topological formulations for the coefficient matrices of state equations for switched-capacitor networks. IEEE Trans. Circuits and Systems CAS-29 (1982) 106–115MathSciNetMATHCrossRefGoogle Scholar
  38. 84.
    Tsividis, Y. P.: Analysis of switched capacitive networks. IEEE Trans. Circuits and Systems CAS-26 (1979) 935–947Google Scholar
  39. 85.
    Kurth, C. F.: Two-port analysis of SC networks with continuous input signals. Bell Syst. Tech. J. 59 (1980) 1297–1316MathSciNetGoogle Scholar
  40. 86.
    Bruton, L. T.; Bhattacharjee, G.: Formulation of the nodal charge equations of switched capacitor networks containing nullors. Proc. European Conf. on Circuit Theory and Design ECCTD-81, The Hague, Netherlands (1981) 110–117Google Scholar
  41. 87.
    DeMan, H. J.; Rabaey, J.; Arnout, G.; Vandewalle, J.: Practical implementation of a general computer aided design technique for switched capacitor circuits. IEEE J. Solid-State Circuits SC-15 (1980) 190–200CrossRefGoogle Scholar
  42. 88.
    Vandewalle, J.; DeMan, H. J.; Rabaey, J.: Time, frequency, and z-domain modified nodal analysis of switched-capacitor networks. IEEE Trans. Circuits and Systems CAS-28 (1981) 186–195MathSciNetCrossRefGoogle Scholar
  43. 89.
    Brglez, F.: An efficient computer-aided analysis of very large switched capacitor networks. IEEE Proc. Int. Symposium on Circuits and Systems, Rome Italy (1982) 5–8Google Scholar
  44. 90.
    Lee, C. F.; Jenkins, W. K.: Computer-aided analysis of switched-capacitor filters. IEEE Trans. Circuits and Systems CAS-28 (1981) 681–692CrossRefGoogle Scholar
  45. 91.
    Strauß, F.: Systematische Verfahren zur Analyse von Schalter-Kondensator-Netzwerken. Ph.D. Dissertation under supervision Prof. R.Unbehauen Universität Erlangen-Nürnberg (1986)Google Scholar
  46. 92.
    Konczykowska, A.; Bon, M.: SCYMBAL 2: A portable computer program for efficient all-symbolic hierarchical analysis of large multiphase switched capacitor networks. Proc. European Conf. on Circuit Theory and Design ECCTD-83, Stuttgart, W. Germany (1983) 375–378Google Scholar
  47. 93.
    Plödeck, R.; Brugger, U. W.; von Grüningen, D. C.; Moschytz, G. S.: SCANAL–a program for computer–aided analysis of switched-capacitor networks. Proceedings of IEE 128 (1981) 277–285Google Scholar
  48. 94.
    Fang, S. C.; Tsividis, Y. P.: Wing, O.: SWITCAP: a switched-capacitor network analysis program. Part I: Basic features. IEEE Circuits and Systems Magazine (1983) 4–10 and Part II: Advanced applications. IEEE Circuits and Systems Magazine (1983) 41–46Google Scholar
  49. 95.
    Vlach, J.; Vlach, M.; Singhal, K.: WATSCAD - a program for switched capacitor analysis and design. IEEE Proc. Int. Symposium on Circuits and Systems, Newport Beach USA (1983) (presentation only)Google Scholar
  50. 96.
    Rübner-Petersen, T.: SCNET–a program for analysis of switched capacitor networks by means of poles and zeros. IEEE Proc. Int. Symposium on Circuits and Systems, Houston USA (1980) 989–993Google Scholar
  51. 97.
    Yue, L.; Chao, S. Y.: SCNSOP - a switched capacitor circuit simulation and optimization program. Proceedings of IEE 133 (1986) 107Google Scholar
  52. 98.
    Ribner, D. B.; Copeland, M. A.: Computer-aided analysis of nonideal linear switched-capacitor networks for high frequency applications. IEEE Proc. Int. Symposium on Circuits and Systems, Kyoto Japan (1985) 1169–1172Google Scholar
  53. 99.
    Vlach, J.; Singhal, K.; Vlach, M.: Computer oriented formulation of equations and analysis of switched-capacitor networks. IEEE Trans. Circuits and Systems CAS-31 (1984) 753–765MATHCrossRefGoogle Scholar
  54. 100.
    Opal, A.; Vlach, J.; Singhal, K.: Analysis and sensitivity of periodically switched linear networks. IEEE Proc. Int. Symposium on Circuits and Systems, San Jose USA (1986) 380–383Google Scholar
  55. 101.
    Pandel, J.; Dawei, H.: Analysis of wave switched-capacitor filters. Int. J. Circuit Theory and Applications 11 (1983) 377–395CrossRefGoogle Scholar
  56. 102.
    Sewell, J. I.: Analysis of active switched-capacitor networks. Proceedings of IEEE 68 (1980) 292–293CrossRefGoogle Scholar
  57. 103.
    Wolovitz, L. B.; Sewell, J. I.: Efficient computer techniques for the exact analysis of all non-ideal effects of switched-capacitor networks in the time domain. IEEE Proc. Int. Symposium on Circuits and Systems, San Jose USA (1986) 373–376Google Scholar
  58. 104.
    Lücker, R.: Frequency domain analysis of switched-capacitor circuits using z-domain transfer function evaluation; Archiv Elektr. Ubertr. AEÜ-36 (1982) 383–392Google Scholar
  59. 105.
    Fang, S.-C.; Tsividis, Y.; Wing, O.: Time-and frequency-domain analysis of linear switched-capacitor networks using state charge variables. IEEE Trans. Computer-Aided Design CAD-4 (1985) 651–661CrossRefGoogle Scholar
  60. 106.
    Wali, U. V.; Pal, R. N.; Chatterjee, B.: Compact modified nodal approach for switched-capacitor network analysis. IEEE Trans. Computer-Aided Design CAD-5 (1986) 443–447CrossRefGoogle Scholar
  61. 107.
    Müller, G.; Ternes, G. C.: Simple method for analysis of a class of switched-capacitor filters. Electronics Letters 16 (1980) 852–853CrossRefGoogle Scholar
  62. 108.
    Müller, G.; Ternes, G. C.: A pauper’s algorithm for switched-capacitor circuit analysis. Electronics Letters 17 (1981) 942–944CrossRefGoogle Scholar
  63. 109.
    Knob, A.; Dessoulavy, R.: Analysis of switched-capacitor networks in the frequency domain using continuous-time two-port equivalents. IEEE Trans. Circuits and Systems CAS-28 (1981) 947–953Google Scholar
  64. 110.
    Wehrhahn, E.: Evaluation of transfer functions of ideal S.C. networks in z-domain using standard linear symbolic or semisymbolic network analysis programs. Electronics Letters 16 (1980) 801–802CrossRefGoogle Scholar
  65. 111.
    Wehrhahn, E.: Determination in the z-domain of the transfer functions of ideal switched-capacitor networks using standard network analysis programs. Proc. European Conf. on Circuit Theory and Design ECCTD-81, The Hague, Netherlands (1981) 794–797Google Scholar
  66. 112.
    Nelin, B. D.: Analysis of switched-capacitor networks using general-purpose circuit simulation programs. IEEE Trans. Circuits and Systems CAS-30 (1983) 43–48CrossRefGoogle Scholar
  67. 113.
    Tawfik, M. S.; Senn, P.; Mazare, G.: On the relationship between LDI and bilinear switched-capacitor ladder filters. IEEE Proc. Int. Symposium on Circuit and Systems, Kyoto Japan (1985) 527–530Google Scholar
  68. 114.
    Attaie, N.; Ahuja, B. K.: Computer aided design and analysis of a voice-band modem switched capacitor filter. IEEE Proc. Int. Symposium on Circuits and Systems, San Jose USA (1986) 141–144Google Scholar
  69. 115.
    Lutz, P.: Frequenzanalyse von Schalter-Kondensator-Netzwerken mit Hilfe analoger Ersatzschaltungen. Dissertation TU Wien, Austria (1985)Google Scholar
  70. 116.
    Osowski, S.: Computer simulation of SC Circuits using NAP. Electronics Letters 23 (1987) 547–549CrossRefGoogle Scholar
  71. 117.
    Unbehauen, R.; Cichocki, A.: Ein Beitrag zur Synthese von SC-Netzwerken zur linearen and nichtlinearen Signalverarbeitung. NTZ Archiv 6 (1986) 271–285Google Scholar
  72. 118.
    Cichocki, A.; Unbehauen, R.: Simple technique for analysis of SC networks using general-purpose circuit simulation programs. Electronics Letters 22 (1986) 956–958CrossRefGoogle Scholar
  73. 119.
    Fischer, J. H.: Noise sources and calculation techniques for switched capacitor filters IEEE J. Solid-State Circuits SC-17 (1982) 742–752CrossRefGoogle Scholar
  74. 120.
    Gobet, C.-A.; Knob, A.: Noise analysis of switched capacitor networks. IEEE Trans. Circuits and Systems CAS-30 (1983) 37–43CrossRefGoogle Scholar
  75. 121.
    Furrer, B.; Guggenbühl, W.: Noise analysis of a switched-capacitor biquad. Archiv Elektr. Übertr. AE0–37 (1983) 35–40Google Scholar
  76. 122.
    Maloberti, F.; Montecchi, F.; Svelto, V.: Noise and gain in a SC integrator with real operational amplifier. Alta Frequenza 50 (1981) 4–11Google Scholar
  77. 123.
    Li, S.-W.; Stephenson, F. W.; Velezquez-Ramos, J.: Noise analysis of switched-capacitor filters. IEEE Proc. Int. Symposium on Circuits and Systems, Montreal Canada (1984) 1312–1315Google Scholar
  78. 124.
    Rabaey, J.; Vandewalle, J.; DeMan, H.: A general and efficient noise analysis technique for switched capacitor filters. IEEE Proc. Int. Symposium on Circuits and Systems, Newport Beach USA (1983) 570–573Google Scholar
  79. 125.
    Maloberti, F.; Montecchi, F.: Low-frequency noise reduction in time-shared switched-capacitor ladder filters. IEE Proc. G. Electronic Circuits and Systems 132 (1985) 39–45CrossRefGoogle Scholar
  80. 126.
    Espinosa, G.; Verdad, F.; Maloberti, F.: Low frequency noise reduction in high order switched-capacitor filters. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia USA (1987) 734–737Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Rolf Unbehauen
    • 1
  • Andrzej Cichocki
    • 2
  1. 1.Lehrstuhl für Allgemeine und Theoretische ElektrotechnikUniversität Erlangen-NürnbergErlangenDeutschland
  2. 2.Technical UniversityWarsawPoland

Personalised recommendations