Skip to main content

MOS Devices for Linear Analog Integrated Circuits

  • Chapter
  • 467 Accesses

Part of the book series: Communications and Control Engineering Series ((CCE))

Abstract

Most monolithic integrated circuits can be classified into three large groups: silicon bipolar circuits based on bipolar transistors [1], MOS (metal-oxide-semiconductor) circuits which use MOS field-effect transistors as the basic active elements [1–10] and GaAs (Gallium-Arsenide) circuits employing GaAs transistors [63, 64].*

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference and Sources for Further Reading

  1. Gray, P. R.; Meyer, R. G.: Analysis and Design of Analog Integrated Circuits. New York: John Wiley 1984

    Google Scholar 

  2. Tsividis, Y.; Antognetti (eds.): Design of MOS VLSI Circuits for Telecommunications. Englewood Cliffs: Prentice Hall 1985

    Google Scholar 

  3. Allen, P. E.; Sanchez-Sinencio, E.: Switched Capacitor Circuits. New York: Van Nostrand 1984

    Google Scholar 

  4. Gregorian, R.; Ternes, G. C.: Analog MOS Integrated Circuits for Signal Processing. New York: John Wiley 1986

    Google Scholar 

  5. Allen, P. E.; Holberg, D. R.: CMOS Analog Circuit Design. New York: Holt, Rinehart and Winston 1987

    Google Scholar 

  6. Tsividis, Y.: Operation and Modeling of the MOS Transistor. New York: McGraw-Hill 1987

    Google Scholar 

  7. Penney, W. M.; Lau, L. (eds.): MOS Integrated Circuits. Florida: Robert E. Krieger Mabor 1985

    Google Scholar 

  8. Mayor, J.; Jack, M. A.; Denyer P. B.: Introduction to MOS LSI Design. London: Addison Wesley 1983

    Google Scholar 

  9. De Witt, G. Ong: Modern MOS Technology, Processes, Devices and Design. New York: McGraw-Hill 1986

    Google Scholar 

  10. Allstot, D. J.; Black, W. C: Technological design considerations for monolithic MOS switched-capacitor filtering systems. Proceedings of IEEE 71 (1983) 967–986

    Article  Google Scholar 

  11. Gray, P. R.; Meyer, R. G.: MOS operational amplifier design–a tutorial overview. IEEE J. Solid State Circuits 17 (1982) 969–982

    Article  Google Scholar 

  12. Tsividis, Y. P.: Design considerations in single-channel MOS analog integrated circuits–A tutorial. IEEE J. Solid-State Circuits 13 (1978) 383–391

    Article  Google Scholar 

  13. Hsieh, K.-C.; Gray, P. R.; Senderowicz D.; Messerschmidt, D. G.: A low-noise chopper-stabilized differential switched-capacitor filtering technique. IEEE J. Solid-State Circuits 16 (1981) 708–715

    Article  Google Scholar 

  14. Hosticka, B. J.: CMOS operational amplifiers in the book [2], 58–103

    Google Scholar 

  15. Shoucair, F. S.: Design considerations in high temperature analog CMOS integrated circuits. IEEE Trans. Components, Hybrids and Manufacturing Technology 9 (1986) 242–251

    Article  Google Scholar 

  16. Degrauwe, M. G.; Rijmenants, J.; Vittoz, E. A.; De Man, H. J.: Adaptive biasing CMOS amplifiers. IEEE J. Solid-State Circuits 17 (1982) 522–528

    Article  Google Scholar 

  17. Vittoz, E. A.: The design of high-performance analog circuits on digital CMOS chips. IEEE J. Solid-State Circuits 20 (1985) 657–665

    Article  Google Scholar 

  18. Vittoz, E. A.: Dynamic analog techniques in the book [2], 145–170

    Google Scholar 

  19. Krummenacher, F.; Vittoz, E.; Degrauwe, M.: Class AB CMOS amplifier for micropower SC filters. Electronics Letters 17 (1981) 433–435

    Article  Google Scholar 

  20. Wang, Ch. K.; Castello, R.; Gray, P. R.: A scalable high-performance switched-capacitor filter. IEEE J. Solid-State Circuits 21 (1986) 57–64

    Article  Google Scholar 

  21. Pletersek, T.; Trontelj, J.; Trontelj, L.; Jones, I.; Shenton, G.: High-performance designs with CMOS analog standard cells. IEEE J Solid-State Circuits 21 (1986) 215–222

    Article  Google Scholar 

  22. Kang, S. M.: Accurate simulation of power dissipation in VLSI circuits. IEEE J. Solid-State Circuits 21 (1986) 889–891

    Article  Google Scholar 

  23. Wong, S. L.; Salama, C. A. T.: An efficient CMOS buffer for driving large capacitive loads. IEEE J. Solid-State Circuits 21 (1986) 464–469

    Article  Google Scholar 

  24. Matsui, K.; Matsuura, T.; Fukasawa, S.; Izawa, Y.; Toba, Y.; Miyake, N.; Nagasawa, K.: CMOS Video filters using switched capacitor 14-MHz circuits. IEEE J. Solid-State Circuits 20 (1985) 1096–1102

    Article  Google Scholar 

  25. Nicollini, G.; Pancini, D.; Pernici, S.: Simulation-oriented noise model for MOS devices. IEEE J. Solid-State Circuits 22 (1987) 1209–1212

    Article  Google Scholar 

  26. Hayes, J. P.: A unified switching theory with applications to VLSI design. Proceedings of IEEE 70 (1982) 1140–1151

    Article  Google Scholar 

  27. Davidson, J. C; Current, K. W.: MOS current sources–a comparison and evaluation. IEEE Proc. Int. Symposium on Circuits and Systems, Montreal Canada (1984) 1215–1218

    Google Scholar 

  28. Liu, S.; Nagel L. W.: Small-signal MOSFET models for analog circuit design. IEEE J. Solid-State Circuits 17 (1982) 983–998

    Article  Google Scholar 

  29. Sheu, B. J.; Scharfetter, D. L.; Hu, C.; Pederson, D. O.: A compact IGFET charge model. IEEE Trans. Circuits and Systems 31 (1984) 745–748

    Article  Google Scholar 

  30. Sheu, B. J.; Scharfetter, D. L.; Ko, P.-K.; Jeng, M.-C.: BSIM: Berkeley short-channel IGFET model for MOS transistors. IEEE J. Solid-State Circuits 22 (1987) 558–566

    Article  Google Scholar 

  31. Sodini, C. G.; Ko, P.-K.; Moll, J. L.: The effect of high fields on MOS device and circuit performance. IEEE Trans. Electron Devices 31 (1984) 1386–1393

    Article  Google Scholar 

  32. Garverick, S. L.; Sodini, C. G.: A simple model for scaled MOS transistors that includes field-dependent mobility. IEEE J. Solid-State Circuits 22 (1987) 111–114

    Article  Google Scholar 

  33. Garverick, S. L.; Sodini, C. G.: Large-signal linearity of scaled MOS transistors. IEEE J Solid-State Circuits 22 (1987) 282–286

    Article  Google Scholar 

  34. Tsividis, Y. P.: Relation between incremental intrinsic capacitances and transconductances in MOS transistors. IEEE Trans. Electron Devices 27 (1980) 946–948

    Article  Google Scholar 

  35. Tsividis, Y. P.; Masetti, G.: Problems in precision modeling of the MOS transistor for analog applications. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 3 (1983) 72–79

    Article  Google Scholar 

  36. Vittoz, E.; Fellrath, J.: CMOS analog integrated circuits based on weak inversion operation. IEEE J. Solid-State Circuits 12 (1977) 224–231

    Article  Google Scholar 

  37. Shieh, J.-H.; Patil, M.; Sheu, B. J.: Measurement and analysis of charge injection in MOS analog switches. IEEE J. Solid-State Circuits 22 (1987) 277–281

    Article  Google Scholar 

  38. Wegmann, G.; Vittoz, E. A.; Rapali, F.: Charge injection in analog MOS switches. IEEE J. Solid-State Circuits 22 (1987) 1091–1097

    Article  Google Scholar 

  39. Toh, K.-Y.; Ko, P.-K.; Meyer, R. G.: An engineering model for short-channel MOS devices. IEEE J. Solid-State Circuits 23 (1988) 950–958

    Article  Google Scholar 

  40. Nedungadi, A.; Viswanathan, T. R.: Design of linear CMOS transconductance elements. IEEE Trans. Circuits and Systems 31 (1984) 891–894

    Article  Google Scholar 

  41. Torrance, R. R.; Viswanathan, T. R.; Hanson, J. V.: CMOS voltage to current transducers. IEEE Trans. Circuits and Systems 32 (1985) 1097–1104

    Article  Google Scholar 

  42. Viswanathan, T. L.: CMOS transconductance element. Proceedings of IEEE 74 (1986) 222–224

    Article  Google Scholar 

  43. Park, C.-S.; Schaumann, R.: A high-frequency CMOS linear transconductance element. IEEE Trans. Circuits and Systems 33 (1986) 1132–1138

    Article  Google Scholar 

  44. Park, C. S.; Schaumann, R.: Design of an eighth-order fully integrated CMOS 4MHz continuous-time bandpass filter with digital/analog control of frequency and quality factor. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia USA (1987) 754–757

    Google Scholar 

  45. Seevinck, E.; Wassenaar, R. F.: A versatile CMOS linear transconductor/square-law function circuit. IEEE J. Solid-State Circuits 22 (1987) 366–377

    Article  Google Scholar 

  46. Bult, K.; Wallinga, H.: A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation. IEEE J. Solid-State Circuits 22 (1987) 357–365

    Article  Google Scholar 

  47. Nedungadi, A. P.: Effects of nonidealities on the performance of a CMOS transconductance linearization scheme. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia USA (1987) 758–761

    Google Scholar 

  48. Stone, D. C.; Schroeder, J. E.; Kaplan, R. H.; Smith, A. R.: Analog CMOS building blocks for custom and semicustom applications. IEEE J. Solid-State Circuits 19 (1984) 55–61

    Article  Google Scholar 

  49. Enomoto, T.; Ishihara, T.; Yasumoto, M.-A.; Aizawa, T.: Design, fabrication, and performance of scaled analog IC’s. IEEE J. Solid-State Circuits 18 (1983) 395–402

    Article  Google Scholar 

  50. Degrauwe, M. G.; Sansen, W. M.: The current efficiency of MOS transconductance amplifiers. IEEE J. Solid-State Circuits 19 (1984) 349–359

    Article  Google Scholar 

  51. Brehmer, K. E.; Wieser, J. B.: Large swing CMOS power amplifier. IEEE J. Solid-State Circuits 18 (1983) 624–629

    Article  Google Scholar 

  52. Ahuja, B. K.: An improved frequency compensation technique for CMOS operational amplifiers. IEEE J. Solid-State Circuits 18 (1983) 629–633

    Article  MathSciNet  Google Scholar 

  53. Fisher, J. A.; Koch, R.: A highly linear CMOS buffer amplifier. IEEE J. Solid-State Circuits 22 (1987) 330–334

    Article  Google Scholar 

  54. Wong, S. L.; Salama, C. A.: A switched differential op-amp with low offset and reduced 1/f noise. IEEE Trans. Circuits and Systems 33 (1986) 1119–1127

    Article  Google Scholar 

  55. Enz, Ch. C.; Vittoz, E. A.; Krummenacher, F.: A CMOS chopper amplifier. IEEE J. Solid-State Circuits 22 (1987) 335–342

    Article  Google Scholar 

  56. Laber, C. A.; Rahim, C. F.; Dreyer, S. F.; Uehara, G. T.; Kwok, P. T.; Gray, P. R.: Design considerations for a high-performance 3-µm CMOS analog standard-cell library. IEEE J. Solid-State Circuits 22 (1987) 181–189

    Article  Google Scholar 

  57. Hagelauer, R.; Ronge, K.: Analog functions implemented on digital CMOS gate arrays–merits and problems. IEEE Trans. Industrial Electronics 33 (1986) 371–376

    Article  Google Scholar 

  58. Säckinger, E.; Guggenbühl, W.: A versatile building block: the CMOS differential difference amplifier. IEEE J. Solid-State Circuits 22 (1987) 287–294

    Article  Google Scholar 

  59. Milkovic, M.: Current gain high-frequency CMOS operational amplifiers. IEEE J. Solid-State Circuits 20 (1985) 845–851

    Article  Google Scholar 

  60. Habekotté, E.; Hoefflinger, B.; Klein, H.-W.; Beunder, M. A.: State of the art in the analog CMOS circuit design. Proceedings of IEEE 75 (1987) 816–828

    Article  Google Scholar 

  61. Peterson, K. D.; Nedungadi, A. P.; Geiger, R. L.: Amplifier design considerations for high frequency monolithic filters. Proc. European Conf. on Circuit Theory and Design ECCTD87, Paris, France (1987) 321–326

    Google Scholar 

  62. Krummenacher, F.; Joehl, N.: A 4-MHz continuous-time filter with on-chip automatic tuning. IEEE J. Solid-State Circuits 23 (1988) 750–758

    Article  Google Scholar 

  63. Haigh, D. G.; Phillips, J. A.: A review of some work on GaAs switched capacitor filters. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia USA (1987) 1114–1117

    Google Scholar 

  64. Larson, L. E.: High-speed analog-to-digital conversion with GaAs technology: prospects, trends and obstacles. IEEE Proc. Int. Symposium on Circuits and Systems, Helsinki Finland (1988) 2871–2878

    Google Scholar 

  65. Rofougaran, A. R.; Furman, B.; Abidi, A. A.: Accurate analog modeling of short channel FETs based on table lookup. IEEE Proc. Int. Symposium on Circuits and Systems, Helsinki Finland (1988) 413–416

    Google Scholar 

  66. Lee, Y. S.; Martin, K. W.: A switched-capacitor realization of multiple FIR filters on a single chip. IEEE J. Solid-State Circuits 23 (1988) 536–542

    Article  Google Scholar 

  67. Sallaerts, D.; Rabaey, D. H.; Dierckx, R. F.; Sevenhans, J.; Haspeslagh, D. R.; De Ceulaer, B. J.: A single-chip U-interface transceiver for ISDN. IEEE J. Solid-State Circuits 22 (1987) 1011–1021

    Article  Google Scholar 

  68. Babanezhad, J. N.; Gregorian, R.: A programmable gain/loss circuit. IEEE J. Solid-State Circuits 22 (1987) 1082–1090

    Article  Google Scholar 

  69. Fisher, G. J.: An enhanced power meter for SPICE 2 circuit simulation. IEEE Trans. Computer-Aided Design 7 (1988) 641–643

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Unbehauen, R., Cichocki, A. (1989). MOS Devices for Linear Analog Integrated Circuits. In: MOS Switched-Capacitor and Continuous-Time Integrated Circuits and Systems. Communications and Control Engineering Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83677-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83677-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83679-4

  • Online ISBN: 978-3-642-83677-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics