Lipoproteins and Atherosclerosis: Lessons from an Animal Model for Familial Hypercholesterolemia

  • T. Kita
  • M. Yokode
  • K. Ishii
  • N. Kume
  • Y. Nagano
  • H. Otani
  • H. Arai
  • S. Narumiya
  • C. Kawai
Conference paper
Part of the Recent Developments in Lipid and Lipoprotein Research book series (LIPID)


In Japan the incidence of heart attacks and cerebral strokes has been rapidly increasing as Western-style food has become popular [1]. Epidemiologic surveys conducted in many countries over the past 30 years have uniformly shown that atherosclerosis becomes more severe as the mean level of low-density lipoprotein (LDL) cholesterol rises in a population [2, 3]. Especially in patients with familial hypercholesterolemia (FH), there are elevations of serum LDL cholesterol level and premature coronary atherosclerosis, because of decreased activity or deficiency of the LDL receptor [4, 5]. If the number of hepatic LDL receptors decreases due to dietary factors such as casein [6], cholesterol [7], or animal fats [8], the serum level of cholesterol (LDL cholesterol) increases in experimental animals or even in the normal population [2], and atherosclerosis develops.


Cholesteryl Ester Foam Cell Familial Hypercholesterolemia Familial Hypercholesterolemia Familial Hypercholesterolemia Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vital Statistics 1984 Japan (1984) The Ministry of Health and Welfare, JapanGoogle Scholar
  2. 2.
    Brown MS, Goldstein JL (1984) How LDL receptors influence cholesterol and atherosclerosis. Sci Am 251(5): 58–66PubMedCrossRefGoogle Scholar
  3. 3.
    Kanel WB, Castelli WP, Gordon T, McNamara PM (1971) Serum cholesterol, lipoproteins, and the risk of coronary heart disease the Framingham study. Ann Intern Med 74: 1–12.Google Scholar
  4. 4.
    Goldstein JL, Brown MS (1982) Insights into the pathogenesis of atherosclerosis derived from studies of familial hypercholesterolemia. In: Carlson LA, Pernow B (eds) Metabolic risk factors in ischemic cardiovascular disease. Raven, New York, pp 17–34Google Scholar
  5. 5.
    Goldstein JL, Kita T, Brown MS (1983) Defective lipoprotein receptors and atherosclerosis. N Engl J Med 309: 288–296.PubMedCrossRefGoogle Scholar
  6. 6.
    Chao Y-S, Yamin T-T, Alberts AW (1982) Effects of cholestyramine on low density lipoprotein binding sites on liver membranes from rabbits with endogenous hypercholesterolemia induced by a wheat starch-casein diet. J Biol Chem 257: 3623–3627.PubMedGoogle Scholar
  7. 7.
    Kovanen PT, Brown MS, Basu SK, Bilheimer DW, Goldstein JL (1981) Saturation and suppression of hepatic lipoprotein receptors a mechanism for the hypercholesterolemia of cholesterolfed rabbits. Proc Natl Acad Sci USA 78: 1396–1400.PubMedCrossRefGoogle Scholar
  8. 8.
    Applebaum-Bowden D, Haffner SM, Hartsook E, Luk KH, Alberts JJ, Hazzard WR (1984) Down-regulation of the low-density lipoprotein receptor by dietary cholesterol. Am J Clin Nutr 39: 360–367.PubMedGoogle Scholar
  9. 9.
    Buja LM, Kovanen PT, Bilheimer DW (1979) Cellular pathology of homozygous familial hypercholesterolemia. Am J Pathol 97: 327–357.PubMedGoogle Scholar
  10. 10.
    Goldstein JL, Ho YK, Basu SK, Brown MS (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 76: 333–337.PubMedCrossRefGoogle Scholar
  11. 11.
    Mahley RW, Innerarity TL, Weisgraber KH, Oh SY (1979) Altered metabolism (in vivo and in vitro) of plasma lipoproteins after selective chemical modification of lysine residues of the apoproteins. J Clin Invest 64: 743–750.PubMedCrossRefGoogle Scholar
  12. 12.
    Fogelman AM, Schechter J, Hokom M, Child JS, Edwards PA (1980) Malondialdehyde alteration of low density lipoprotein leads to cholesterol accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA 77: 2214–2218.PubMedCrossRefGoogle Scholar
  13. 13.
    Goldstein JL, Ho YK, Brown MS, Innerarity TL, Mahley RW (1980) Cholesterylester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine (3-very low density lipoproteins. J Biol Chem 255: 1839–1848.PubMedGoogle Scholar
  14. 14.
    Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit) incidence and development of atherosclerosis and xanthoma. Atherosclerosis 36: 261–268.PubMedCrossRefGoogle Scholar
  15. 15.
    Kita T, Brown MS, Watanabe Y, Goldstein JL (1981) Deficiency of low density lipoprotein receptors in liver and adrenal gland of the WHHL rabbits, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci USA 78: 2268–2272.PubMedCrossRefGoogle Scholar
  16. 16.
    Bilheimer DW, Watanabe Y, Kita T (1982) Impaired receptor-mediated catabolism of low density lipoprotein in the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci USA 79: 3305–3309.PubMedCrossRefGoogle Scholar
  17. 17.
    Kita T, Goldstein JL, Brown MS, Watanabe Y, Hornick CA, Havel RJ (1982) Hepatic uptake of chylomicron remnants in WHHL rabbits; a mechanism genetically distinct from the low density lipoprotein receptor. Proc Natl Acad Sci USA 79: 3623–3627.PubMedCrossRefGoogle Scholar
  18. 18.
    Kita T, Brown MS, Bilheimer DW, Goldstein JL (1982) Delayed clearance of very low density and intermediate density lipoproteins with enhanced conversion to low density lipoprotein in WHHL rabbits. Proc Natl Acad Sci USA 79: 5693–5697.PubMedCrossRefGoogle Scholar
  19. 19.
    Havel RJ, Kita T, Kotite L, Kane JP, Hamilton RL, Goldstein JL, Brown MS (1982) Concentration and composition of lipoproteins in blood plasma of the WHHL rabbit an animal model of human familial hypercholesterolemia. Atherosclerosis 2: 467–474.Google Scholar
  20. 20.
    Kita T, Yokode M, Watanabe Y, Narumiya S, Kawai C (1986) Stimulation of cholesteryl ester synthesis in mouse peritoneal macrophages by cholesterol-rich very low density lipoproteins from the Watanabe heritable hyperlipidemic rabbit, an animal model of familial hypercholesterolemia. J Clin Invest 77: 1460–1465.PubMedCrossRefGoogle Scholar
  21. 21.
    Watanabe Y, Ito T, Shiomi M (1985) The effect of selective breeding on the development of coronary atherosclerosis in WHHL rabbits — an animal model for familial hypercholesterolemia. Atherosclerosis 56: 71–79.PubMedCrossRefGoogle Scholar
  22. 22.
    Ishii K, Kume N, Nagano Y, Yokode M, Kita T (1987) Effects of very low density lipoprotein from Watanabe heritable hyperlipidemic rabbit on cholesteryl ester synthesis in macrophages. Arteriosclerosis 7: 522 aGoogle Scholar
  23. 23.
    Yokode M, Ishii K, Kume N, Nagano Y, Narumiya S, Kita T (1987) Oxidized LDL may be recognized at least by two binding sites on macrophages. Arteriosclerosis 7: 548 aGoogle Scholar
  24. 24.
    Vane JR, Bunting S, Moncada S (1982) Prostacyclin in physiology and pathophysiology. Int Rev Exp Pathol 23: 161–207.PubMedGoogle Scholar
  25. 25.
    Gryglewski RJ, Dembinska-Kiec A, Amuda A, Gryglewska T (1978) Prostacyclin and thromboxane A2 biosynthesis capacities of heart, arteries and platelets at various stages of experimental atherosclerosis in rabbits. Atherosclerosis 31: 385–394.PubMedCrossRefGoogle Scholar
  26. 26.
    Hajjar DP, Weksler BB, Falcone DJ, Hefton JM, Tack-Goldman K, Minick CR (1982) Prostacyclin modulates cholesteryl ester hydrolytic activity by its effect on cyclic adenosine monophosphate in rabbit aortic smooth muscle cells. J Clin Invest 70: 479–488.PubMedCrossRefGoogle Scholar
  27. 27.
    Yokode M, Kita T, Narumiya S, Kawai C (1987) Arachidonate metabolism during foam cell transformation of macrophages. In: Samuelsson B, Paoletti R, Ramwell PW (eds). Advances in prostaglandin, thromboxane, and leukotriene research, vol 17. Raven, New York, pp 229–232Google Scholar
  28. 28.
    Gemsa D, Leser HG, Seitz M, Deimann W, Barlin E (1982) Membrane perturbation and stimulation of arachidonic acid metabolism. Mol Immunol 19: 1287–1296.PubMedCrossRefGoogle Scholar
  29. 29.
    Feuerstein G (1984) Leukotrienes and the cardiovascular system. Prostaglandins 27: 781–802.PubMedCrossRefGoogle Scholar
  30. 30.
    Mclntyre TM, Zimmerman GA, Prescott SM (1986) Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils. Proc Natl Acad Sci USA 83: 2204–2208.CrossRefGoogle Scholar
  31. 31.
    Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 81: 3883–3887.PubMedCrossRefGoogle Scholar
  32. 32.
    Morel DW, DiCorleto PE, Chisolm GM (1984) Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 4: 357–364.PubMedCrossRefGoogle Scholar
  33. 33.
    Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D (1986) Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 77: 641–644.PubMedCrossRefGoogle Scholar
  34. 34.
    Yamamoto A, Matsuzawa Y, Kishino B, Hayashi R, Hirobe K, Kikkawa T (1983) Effects of probucol on homozygous cases of familial hypercholesterolemia. Atherosclerosis 48: 157–166.PubMedCrossRefGoogle Scholar
  35. 35.
    Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai C (1987) Probucol prevents the progression of atherosclerosis in WHHL rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 84: 5928–5931.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • T. Kita
  • M. Yokode
  • K. Ishii
  • N. Kume
  • Y. Nagano
  • H. Otani
  • H. Arai
  • S. Narumiya
  • C. Kawai

There are no affiliations available

Personalised recommendations