Skip to main content

Abstract

Lipoprotein receptors play a major role in the homeostasis of plasma lipoproteins. They are integrated constituents of cell membranes and bind certain lipoproteins which are then internalized by the cells. Insofar as lipoprotein receptors affect the concentration of lipoproteins in the plasma and may play a role in lipoprotein accumulation in arterial cells, they have both a direct and an indirect influence on the progression of atherosclerosis. The occurence of receptor defects [1] or structural defects of apolipoproteins [2] prevent a normal lipoprotein-receptor interaction. The abnormal lipoprotein particles thus formed are enriched with cholesteryl esters and are catabolized via a separate, so-called scavenger pathway in the macrophage system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldstein JL, Brown MS (1983) Familial hypercholesterolemia. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 672–712

    Google Scholar 

  2. Brown MS, Goldstein JL, Fredrickson DS (1983) Familial type III hyperlipoproteinemia (dysbetalipoproteinemia). In: Stanbury LB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 655–671

    Google Scholar 

  3. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52: 223–261.

    Article  PubMed  CAS  Google Scholar 

  4. Ho YK, Brown MS, Goldstein JL (1980) Hydrolysis and excretion of cytoplasmic cholesterol esters by macrophages stimulation by high density lipoproteins and other agents. J Lipid Res 21: 391–398.

    PubMed  CAS  Google Scholar 

  5. Basu SK, Brown MS, Ho Yk, Havel JR, Goldstein JL (1981) Mouse macrophages synthesize and secrete a protein resembling apo E. Proc Natl Acad Sci USA 78: 7545–7549.

    Article  PubMed  CAS  Google Scholar 

  6. Mahley RW, Innerarity TL (1983) Lipoprotein receptors and cholesterol homeostasis. Biochim Biophys Acta 737: 197–217.

    PubMed  CAS  Google Scholar 

  7. Schmitz G, Robenek H, Lohmann U, Assmann G (1985) Interaction of high density lipoproteins with macrophages biochemical and morphological characterization of cell surface receptor binding, endocytosis and resecretion of high density lipoproteins by macrophages. EMBO J 4: 613–622.

    PubMed  CAS  Google Scholar 

  8. Schmitz G, Niemann R, Brennhausen B, Krause R, Assmann G (1985) Regulation of high density lipoprotein receptors in cultured macrophages role of acyl-CoA cholesterol acyltransferase. EMBO J 4: 2773–2779.

    PubMed  CAS  Google Scholar 

  9. Schmitz G, Assmann G, Robenek H, Brennhausen B (1985) Tangier disease a disorder of intracellular membrane traffic. Proc Natl Acad Sci USA 82: 6305–6309.

    Article  PubMed  CAS  Google Scholar 

  10. Schmitz G, Robenek H, Beuck M, Krause R, Schurek A, Niemann R, Assmann G (1988) Calcium antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. I. Characterization of cellular lipid metabolism. Arteriosclerosis 8: 46–56.

    CAS  Google Scholar 

  11. Robenek H, Schmitz G (1988) Calcium antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. II. Characterization of intracellular morphological changes. Arteriosclerosis 8: 57–67.

    Article  PubMed  CAS  Google Scholar 

  12. Etingin OR, Hajjar DP (1985) Nifedipine increases cholesteryl ester hydrolytic activity in lipid-laden rabbit smooth muscle cells a possible mechanism for its antiatherogenic effect. J Clin Invest 75: 1554–1558.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmitz, G., Brennhausen, B., Robenek, H. (1989). Regulation of Macrophage Cholesterol Homeostasis. In: Steinmetz, A., Kaffarnik, H., Schneider, J. (eds) Cholesterol Transport Systems and Their Relation to Atherosclerosis. Recent Developments in Lipid and Lipoprotein Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83665-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83665-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50548-8

  • Online ISBN: 978-3-642-83665-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics