Advertisement

Tumorigenesis and Tumor Markers

  • Frank B. Gelder
  • Valerian B. Pinto
Part of the Medical Radiology book series (MEDRAD)

Abstract

Until recently, the bulk of basic information about cancer came from studies which defined phenotypic differences between malignant and normal cells and tissues. The information gained from these studies indicates that cancer cells share certain characteristics. However, these comparative studies failed to define clear-out cancer cell specific alterations or explain the mechanisms responsible for both the induction and the aberrant behavior of tumor cells. Recent technological advances, especiallyat the molecular and gcnctic level, promise to com-plement substantially and extend these earlier com-parative studies. Although several areas of investi-gation have contributed to the rapidly expandingknowledge defining canccr biology, two avenueswere of central importance: (a) the biological andbiochemical characterization of DNA and RNA tu-mor viruses leading to techniques in somatic cellhybridization, chromosomal transfer, and l)NAtransfection, and (b) the identification and utiliza-tion of bacterial restriction endonuclease enzymes,leading to the molecular cloning and detailed anal-yses of discrete DNA segments.

Keywords

Epidermal Growth Factor Receptor Carcinoembryonic Antigen Small Cell Carcinoma Bovine Leukemia Virus Prostatic Acid Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelev 01, Perova SD, Khramkova NI, Postnikova ZA, Irlin IS (1963) Productional of embryonal α-globulin by transplantable mouse hepatomas. Transplantation 1: 174CrossRefGoogle Scholar
  2. Alexander JC Jr, Silverman NA, Chretien PB (1976) Effect of age and cigarette smoking on carcinoembryonic antigen levels. JAMA 235: 1975CrossRefGoogle Scholar
  3. Alsabti E (1979) Carcinoembryonic antigen (CEA) as a prognostic marker in colonic cancer. J Surg Onocl 12: 127CrossRefGoogle Scholar
  4. Al-Sarraf M, Baker L, Talley RW, Kithier K, Vaitkevicius VK (1979) The value of the serial carcinoembryonic antigen (CEA) in predicting response rate and survival of patients with gastrointestinal cancer treated with chemotherapy. Cancer 44: 1222PubMedCrossRefGoogle Scholar
  5. Arnaud JP, Koehl C, Adloff M (1980) Carcinoembryonic antigen (CEA) in diagnosis and prognosis of colorectal carcinoma.Dis Colon Rectum 23: 141PubMedCrossRefGoogle Scholar
  6. Banwo 0, Versey J, Hobbs JR (1974) New oncofetal antigen for human pancreas. Lancet 1: 643–645PubMedCrossRefGoogle Scholar
  7. Bast RC Jr, Knapp RC (1985) Recent advances in the immunodiagnosis of epithelial ovarian carcinoma. In: Alberts DS, Surwit EA (eds) Ovarian cancer. Nijhoff, Boston, pp 23–35CrossRefGoogle Scholar
  8. Bast RC Jr, Klug TL, John ES, Jenison E, Niloff JM, Lazarus H, Berkowitz RS, etal . (1983) A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med 309: 883–887PubMedCrossRefGoogle Scholar
  9. Beatty JD, Romero C, Brown PW, Lawrence W, Terz JJ (1979) Clinical value of carcinoembryonic antigen. Arch Surg 114: 563CrossRefGoogle Scholar
  10. Benedict WF, Weissman BE, Mark C, Stanbridge EJ (1984) Tumorigenicity of human HT1080 fibrosarcoma x normal fibroblast hybrids: Chromosome dosage dependency. Cancer Rs 44: 3471–3479Google Scholar
  11. Berkowitz RS, Goldstein DP (1979) Methotrexate with citrovorum factor rescue for nonmetastatic gestational trophoblastic neoplasms. Obstet Gynecol 54: 725Google Scholar
  12. Berridge MF (1975) Control of cell division: a unifying hypothesis. J Cyclic Nucleotide Res 1: 305–320Google Scholar
  13. Berridge MJ (1984a) Inositol trisphosphate and diacylglycrol second messengers Biohem J 220:345–360PubMedGoogle Scholar
  14. Berridge MJ (1984) Inositol trisphoshate, a novel second messenger in cellular signal transduction. Nature 312:315–321Google Scholar
  15. Berridge MJ, Heslop JP,Irvine RF, Brown KD (1984) Inositol trisphospate formation and calcium mobilization in Swiss 3T3 cells in responce to platelet-derived growth factor. Biochem J 222:195–201Google Scholar
  16. Viral oncogenes. Cell 42:23–28PubMedCrossRefGoogle Scholar
  17. Bos JL, Toksoz D, Marshall CJ, Verlaan de Vries M, Veeneman GH, van der Eb A, van Boom JH, etal .(1985) aminoacid substitution at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. Nature 315:726–730PubMedCrossRefGoogle Scholar
  18. Braunstein GD, Vaitukaitus JL, Carbone PO, Ross GT (1973) Ectopic production of human charionic gonadotropin by neoplasms 78:39PubMedGoogle Scholar
  19. Bresalier RS, Karlin DA (1979) Meningeal metastasis from rectal carcinoma with elevated cerebrospital fluid carcinoembryonic antigen. Dis Colon Rectum 22:216PubMedCrossRefGoogle Scholar
  20. Broek D,Samiy N, Fasano O, Fujiyama A, Tamanoi f, Northup J, Wigler M, (1985) Differential activation of yeast adenylate cyclase by wild type and mutant RAS proteins. Cell 41:763–769PubMedCrossRefGoogle Scholar
  21. Canney PA, Moore M, Wilkinson PM, James RD, (1984) Ovarian cancer antigen CA 125, a prospective clinical as sessment of its role as a tumor marker. Br J Cancer 50:765–769PubMedCrossRefGoogle Scholar
  22. Castagna M, Takai Y, Kaibuchi K, Sano K Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated,phospholipid-dependent protein kinase by tumor-promoting phorbol ester. J Biol Chem 275:7847–7851Google Scholar
  23. Cavenee WK, Dryja TP, Phillips RA, Benedict WF Yodbout R, Yallie BL, Murphree AL, etal . (1983) Expression of recessive alleles by chromosomal mechanism in retinoblastoma. Nature 305:779–786PubMedCrossRefGoogle Scholar
  24. Cejka J, Kithier K,(1985) Immunoassay for pancreatic oncofetal antigen. clin Chem 31:780–781PubMedGoogle Scholar
  25. Chen ISY, Slamon DJ, Rosenblatt JD, Shah NP, Quar SG, Wachsan W (1985) The x gene is essential for HTLV replication. Science 229;54–58PubMedCrossRefGoogle Scholar
  26. chia D, Terasaki PI, Suyama N, Galton J,Hirota M, Katz D (1985) Use of monoclonal antibody to sialylated Lea and sialylated Lex for serologic tests of cancer. Cancer Res 45:435–437Google Scholar
  27. Clarke MF, Westin E, Schmidt D, Josephs SF, Ratner L, Wong-Staal F, Gallo, RC, Reitz MS (1984) transformation of NIH-3T3 cell by a human c-sis cDNA clone. Nature 308:464–467PubMedCrossRefGoogle Scholar
  28. Cutita F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826CrossRefGoogle Scholar
  29. Delfs E (1957) Quatitative chorionic gonadotropin. Prognostic value in hydatidiform mole and chorionepithelioma. Obstet.GynecolPubMedGoogle Scholar
  30. DelVillano BC, Brennan S, Brock P, Bucher C, Liu V, McClure M, Rake,B, etal . (1983) radioimmunometric as-say for a monoclonal antibody defined tumor marker, CA 19-9. Clin Chem 29:549–552PubMedGoogle Scholar
  31. Eva A, Robbins KC, Andersen PR, Srinivasan A, Tronick SR, Reddy EP, Elmore NW etal .(1982) Cellular genes analogous to retroviral onc genes are transcribed in human tumor cells. Nature 295:116–119PubMedCrossRefGoogle Scholar
  32. Fasano O, Aldrich T, Tamanoi F, Taporowsky E, Furth M, Wigler M (1984) Analysis of the transforming potential of the human H-ras gene by random mutagenesis Proc Natl Acad Sci USA 81:4008–4012PubMedCrossRefGoogle Scholar
  33. Felber BK, Paskalis H, Kleinman-Ewing C, Wong-Staal F, Pavlakis GN (1985) The px protein of HTLV-I is a transcriptional activator of its long terminal repeats. Science 229:672–679CrossRefGoogle Scholar
  34. Fujisawa JI, Seiki M, Kiyokawa T, Yoshida M (1985) Functional activation of the long terminal repeat of human T-cell leukemia virus type I by trans-acting factor. J Biol Chem 82:2277–2281Google Scholar
  35. Gelder FB, Reese CJ, Moosa AR, Hall T, Hunter R (1978) Purification, partial characterization and clinical evaluation of a pancreatic oncofetal antigen. Cancer Res 38: 312- 324Google Scholar
  36. Gelder FB, Barr LH, Goldman LI (1983) Application of tumor markers in the immunodiagnosis of cancer. Radiobioassays, Vol II., (Askar FS, Ed), CRC Press, Inc 99–115Google Scholar
  37. Gitlin D, Perricelli A, Gitlin GM (1972) Synthesis of α-fetoprotein by liver, yolksac, and gastrointestinal tract of the human conceptus. Cancer Res 32: 979Google Scholar
  38. Gold P, Freedman SO (1965) Demonstration of tumor-specific antigens in human colonic carcinomata by immunologic tolerance and absorption techniques. J Exp Med 121:439PubMedCrossRefGoogle Scholar
  39. Gold P, Freedman SO (1975) Tests for carcinoembryonic antigen.Role in diagnosis and management of cancer. JAMA 234: 190CrossRefGoogle Scholar
  40. Gold P, Gold M, Freedman SO (1968) Cellular location of carcinoembryonic antigen of the human digestive system. Cancer Res 28: 1331PubMedGoogle Scholar
  41. Gooi HC, Feizi T, Kapadia A, Knowles BB, Solter D, Evans MJ (1981) Stage-specific embryonic antigen involves alpha 1-3 fucosylated type 2 blood group chains. Nature 292:156–158PubMedCrossRefGoogle Scholar
  42. Gooi HC, Williams LK, Uemura K, Hounsell EF, McIlhinney RA, Feizi T (1983) A marker of human foetal endoderm defined by a monoclonal antibody involves Type 1 blood group chains. Mol Immunol6: 607–613CrossRefGoogle Scholar
  43. Goustin AS, Betsholtz C, Pfeifer-Ohlsson S, Persson H, Rydnert J, Bywater M, Holmgren G, etal . (1985) Coexpression of the sis and myc proto-oncogenes in developing human placenta suggestsautocrine control of trophoblast growth. Cell 41 : 301–312PubMedCrossRefGoogle Scholar
  44. Herrera MA, Chum TM, Holyoke ED, Mittelman A (1977) Cea monitoring of palliative treatment for colorectal carcinoma. Am J Surg 185: 23Google Scholar
  45. Hesketh TR, Moore JP, Morris JDH, Taylor MV, Rogers J, Smith GA, Metcalfe JC (1985) A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature 313: 481–484PubMedCrossRefGoogle Scholar
  46. 46.
    Hoobs JR, Knapp MI, Branfoot AC (1980) Pancreatic oncofetal antigen (POA): its frequency and localization in humans. Oncodev Bioi Med 1: 37–48Google Scholar
  47. Holmgren J, Lindholm L, Perssor B, Lagergard T, Nilsson 0, Svennerholm L, Rudenstam RM etal . (1984) Detection by monoclonal antibody of carbohydrate antigen CA50 in serum of patients with carcinoma. Br Med J 288: 1479–1482CrossRefGoogle Scholar
  48. Ishii M (1973) Radioimmunoassay of alpha-fetoprotein. Gann Monogr 14: 89Google Scholar
  49. Jones WB (1975) Treament of chorioinic tumors. Clin Obstet GynecolPubMedCrossRefGoogle Scholar
  50. Kabawat S, Bast RC Jr, Bhan AK, Welch WR, Knapp RC, Colvin RB (1983a) Tissue distribution of a coelomic epithelium related antigen recognized by the monoclonal antibody OC 125. Int J Gynecol Pathol2: 275–285PubMedCrossRefGoogle Scholar
  51. Kabawat S, Bast RC, Welch WR, Knapp RC, Colvin RB s(1983b) Immunopathologic characterization of a monoclonal antibody that recognizes common surface antigen of human ovarian tumors of serous, endometrioid, and clear cell types. Am J Clin Pathol 79: 98–104PubMedGoogle Scholar
  52. Kamata T, Feramisco JR (1984) Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation ofras oncogene proteins. Nature 310: 147–150CrossRefGoogle Scholar
  53. Kawa S, Homma T, Oguchi H, Nagata A, Furuta S, Usuda N, Nagata T, Fukui H (1983) Clinical application of the enzyme immunoassay of pancreatic oncofetal antigen. Ann NY Acad Sci 417: 400–409PubMedCrossRefGoogle Scholar
  54. Kelly K, Cochran BH, Stiles CD, Leder P (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factors. Cell 35: 603–610PubMedCrossRefGoogle Scholar
  55. Khoo SK, Whitaker S, Jones I, MacKay E (1979) Predictive value of serial carcinoembryonic antigen in long-term follow-up of ovarian cancer. Cancer 43: 2471PubMedCrossRefGoogle Scholar
  56. Kikkawa U, Takai Y, Tanaky Y, Miyaka R, Nishizuka Y (1983) Protein kinase C as a possible receptor protein for tumor-promoting phorbol esters. J Bioi Chern 258:11442–11445PubMedGoogle Scholar
  57. Kivinen S, Kuoppala T, Leppilampi M, Vuori J, Kaupilla A (1986) Tumor-associated antigen CA 125 before and during the treatment of ovarian carcinoma. Obstet Gynecol 67: 468–472PubMedGoogle Scholar
  58. Klein G, Klein E (1985) Evolution of tumors and the impact of molecular oncology. Nature 315: 190–195PubMedCrossRefGoogle Scholar
  59. Klug TL, Bast RC Jr Niloff JM, Knapp RC, Zurawski VR Jr (1984) Monoclonal antibody immunoradiometric assay for an antigenic determinant (CA 125) associated with human epithelial ovarian carcinomas. Cancer Res 44: 1048–1053Google Scholar
  60. Knudson AG (1971) Mutation and cancer: statistical study ofretinoblastoma. Proc Natl Acad Sci USA 68: 820–823CrossRefGoogle Scholar
  61. Knudson AG, Strong LC (1972) Mutation and cancer: a model for Wilms’ tumor ofthe kidney. JNCI 48: 313–324PubMedGoogle Scholar
  62. Knudson AG, Hethcote HW, Brown WB (1975) Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc Nat! Acad Sci USA 72: 5116–5120PubMedCrossRefGoogle Scholar
  63. Knudson AG, Meadows AT, Nichols WW, Hill R (1976) Chromosomal deletion and retinoblastoma. N Engl J Med 295: 1120–1123PubMedCrossRefGoogle Scholar
  64. Kohler JP, Siminowitz D, Paloyan D (1980) Preoperative CEA level: a prognostic test in patients with colorectal carcinoma. Ann Surg 46: 449Google Scholar
  65. Koprowski H, Herlyn M, Steplewski Z, Sears HF (1980) Specific antigen in serum of patients with colon carcinoma. Science 212: 53–55CrossRefGoogle Scholar
  66. Koufos A, Hansen MF, Lampkin BC, Workman ML, Copeland NG, Jenkins NA, Cavenee WK (1984) Loss of alleles at loci on human chromosome 11 during genesis of Wilms’ tumor. Nature 309: 170–172PubMedCrossRefGoogle Scholar
  67. Koufos A, Hansen MF, Copeland NG, Jenkins NA, Lampkin BC, Cavernee WK (1985) Loss of heterozygosity in three embryonal tumors suggests a common pathogenic mechanism. Nature 316: 330–334PubMedCrossRefGoogle Scholar
  68. Kozbor D, Croce CM (1984) Amplification of the c-myc oncogene in one of five human breast carcinoma cell lines. Cancer Res 44: 438–441PubMedGoogle Scholar
  69. Kruijer W, Cooper JA, Hunter T, Verma 1M (1984) Plateletderived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312: 711–716PubMedCrossRefGoogle Scholar
  70. Kuusela P, Jalanko H, Roberts P, Sipponen P, Mecklin JP, Pitkanen R, Makela 0 (1984) Comparison of CA19-9 and carcinoembryonic antigen (CEA) level in serum of colorectal diseases. Br J Cancer 49: 135–139PubMedCrossRefGoogle Scholar
  71. Leach KL, James ML, Blumberg PM (1983) Characterization of a specific phorbol ester aporeceptor in mouse brain cytosol. Proc Natl Acad Sci USA 80: 4208–4212PubMedCrossRefGoogle Scholar
  72. Li Y, Holland CA, Hartley JW, Hopkins N (1984) Viral integration near c-myc in 10-20% of MCF 247-induced AKR lymphomas. Proc. Natl Acad Sci USA 81: 6808-6811PubMedCrossRefGoogle Scholar
  73. Libermann TA, Nasbaum MR, Razon N, Kris R, Lax I, Soreq H, Whittle N, etal . (1985) Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313: 144–147PubMedCrossRefGoogle Scholar
  74. Lim CN-H, McPherson JA, McClelland AR, McCoy L, Koch M (1980) Value of serial CEA determinations in a surgical adjuvant trial of colorectal and gastric carcinoma. J Surg Oncol 14: 275PubMedCrossRefGoogle Scholar
  75. Lindgren J, Wahlstrom T, Seppala M (1979) Tissue CEA in premalignant epithelial lesions and epidermoid carcinoma of the uterine cervix: prognostic significance. Int J Cancer 23: 448PubMedCrossRefGoogle Scholar
  76. Little C, Nau MM, Carney DN, Gazdar AF, Minna JD (1983) Amplification and expression of the myc oncogene in human lung cancer cell lines. Nature 306: 194–196PubMedCrossRefGoogle Scholar
  77. Madeddu G, Langer M, Dettori G, Costanza C (1980) Role of serum carcinoembryonic antigen in preoperative diagnosis of cancer in patients with thyroid nodules. Cancer 45: 2607PubMedCrossRefGoogle Scholar
  78. Marshall CJ, Dave H (1978) Suppression of the transformed phenotype in somatic cell hybrids. J Cell Sci 33: 171–190PubMedGoogle Scholar
  79. Mcintire KR, Vogel CL, Princler GL, Patel IR (1972) Serum alpha-fetoprotein as a biochemical marker for hepatocellular carcinoma. Cancer Res 32: 1941PubMedGoogle Scholar
  80. Metcalfe JC, Pozzan T, Smith GA, Hesketh TR (1980) A calcium hypothesis for the control of cell growth. Biochem Soc Symp 45: 1–26PubMedGoogle Scholar
  81. Metzgar RS, Rodriguez N, Finn OJ, Lan MS, Daash VN, Fernsten PD, Meyers WC, etal . (1984) Detection of pancreatic cancer associated antigen (DU-PAN-2 antigen) in serum and ascites fluid of patients with adenocarcinoma. Proc Natl Acad Sci USA 81: 5242–5246PubMedCrossRefGoogle Scholar
  82. Moolenaar WH, Tsien RY, van der Saag PT, de Laat SW (1983) Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 304: 645–648PubMedCrossRefGoogle Scholar
  83. Muller R, Bravo R, Burkhardt J, Curran T (1984) Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312: 716–720CrossRefGoogle Scholar
  84. Neel BG, Hayward WS, Robinson HL, Fang J, Astrin SM (1981) Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogenes by promoter insertion. Cell 23: 323–334PubMedCrossRefGoogle Scholar
  85. Neil JC, Hughes D, McFarlane R, Wilkie NM, Orions DE, Lees G, Jarret 0 (1984) Transduction and arrangement of the myc gene by feline leukemia virus in naturally occurring cell leukemias. Nature 308: 814–820PubMedCrossRefGoogle Scholar
  86. Nishida K, Sugiura M, Yoshikawa T, Kondo M (1985) Enzyme immunoassay of pancreatic oncofetal antigen (POA) as a marker of pancreatic cancer. Gut 26: 450–455PubMedCrossRefGoogle Scholar
  87. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693–697PubMedCrossRefGoogle Scholar
  88. Ozanne B, Shum A, Richards CS, Cassells D, Grossman D, Trent J, Gusterson B, Hendler F (1985) Evidence for an increase of EGF receptors in epidermoid malignancies. In: Feramisco J, Ozanne B, Stiles CD (eds) Cancer cells. Cold Spring Harbor Laboratory Press, New York, pp 41–46Google Scholar
  89. Pathak S, Strong LC, Ferrell RE, Trindade A (1982) Familial renal cell carcinoma with a 3; 11 chromosome translocation limited to tumor cells. Science 217: 939–941PubMedCrossRefGoogle Scholar
  90. Payne GS, Courtneidge SA, Crittenden LB, Fodly AM, Bishop JM, Varmus HE (1981) Analysis of avian leukosis virus DNA and RNA in bursal tumors: viral gene expression is not required for maintenance of the tumor state. Cell 23: 311–322PubMedCrossRefGoogle Scholar
  91. Payne GS, Bishop JM, Varmus HE (1982) Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphoma. Nature 295: 209–216PubMedCrossRefGoogle Scholar
  92. Reich NC, Levine AJ (1984) Growth regulation of a cellular tumor antigen, p53, in nontransformed cells. Nature 308: 199–201PubMedCrossRefGoogle Scholar
  93. Ricolleau G, Chatal JF, Fumoleau P, Kremer M, Douillard JY, Curtet C (1984) Radioimmunoassay of CA 125 antigen in ovarian carcinomas: Advantages compared with CA 19-9 and CEA. Tumor Bioi 5: 151–159Google Scholar
  94. Ritts RE, DelVillano BC, Jo VL W, Herberman RB, Klug TL, Zurawski VR Jr (1984) Initial clinical evaluation of an immunometric assay for Ca 19-9 using the NCI serum bank. Int J Cancer 33: 339–345PubMedCrossRefGoogle Scholar
  95. Rosen CA, Sodorski JG, Kettman R, Burny A, Haseltin WA (1985) Trans-activation of the bovine leukemia virus long term repeat in BLV-infected cells. Science 227: 320–322PubMedCrossRefGoogle Scholar
  96. Rowley JD (1984) Biological implications of consistent chromosome rearrangements in leukemia and lymphoma. Cancer Res 44: 3159–3168PubMedGoogle Scholar
  97. Ruoslahti E, Seppala M (1971) Studies of carcinofetal proteins. III. Development of a radioimmunoassay for α-fetoprotein in serum of healthy human adults. Int J Cancer 8: 374PubMedCrossRefGoogle Scholar
  98. Savrin RA, Cooperman M, Martin EW Jr (1979) Clinical application of carcinoembryonic antigen in patients with colorectal carcinoma. Dis Colon Rectum 22: 211CrossRefGoogle Scholar
  99. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, etal . (1983) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell line and a neuroblastoma tumor. Nature 305: 245–248PubMedCrossRefGoogle Scholar
  100. Schwartz RO, DiPietro DL (1980) B-hCG as a diagnostic aid for suspected ectopic pregnancy. Obstet Gynecol56: 197PubMedGoogle Scholar
  101. Seizinger BR, Martuza RL, Yusella JF (1986) Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322: 644–647PubMedCrossRefGoogle Scholar
  102. Shimano T, Loor RM, Papsidero LD, Kuriyama M, Vincent RG, Nemoto T, Holyoke ED, etal . (1981) Isolation, characterization and clinical evaluation of a pancreatic cancerassociated antigen. Cancer 47: 1602–1613PubMedCrossRefGoogle Scholar
  103. Shimano T, Mori T, Kitada M, Maruyama H, Kosaki G (1983) Purification and characterization of a pancreatic cancer-associated antigen (PCAA) from normal colonic mucosa. Ann NY Acad Sci 417: 97–102PubMedCrossRefGoogle Scholar
  104. Shousha S, Lyssiotis T, Godfrey VM, Scheuer PJ (1979) Carcinoembryonic antigen in breast cancer tissue: a useful prognostic indicator. Br Med J 1: 777PubMedCrossRefGoogle Scholar
  105. Snitzer LS, McKinney EC, Tejada F, Sigel MM, Rosomott HL, Zubrod CG (1975) Cerebral metastases and carcinoembryonic antigen in CSF. N Engl J Med 293: 1101PubMedGoogle Scholar
  106. Sodorski JG, Rosen CA, Haseltine WA (1984) Trans-acting transcriptional activation of the long terminal repeat ofhuman lymphotropic viruses in infected cells. Science 225: 381–385CrossRefGoogle Scholar
  107. Sporn MB, Todaro CJ (1980) Autocrine secretion and malignant transformation of cells. N Engl J Med 303: 878PubMedCrossRefGoogle Scholar
  108. Srivastava A, Norris JS, Schmooker-Reis RJ, Goldstein S (1985) c-H-ras 1 proto-oncogene amplification and overexpression during the limited replicative life-span of normal human fibroblasts. J Bioi Chern 260: 6404–6409PubMedGoogle Scholar
  109. Steward AM, Nixon D, Zamcheck N, Aisenberg A (1974) Carcinoembryonic antigen in breast cancer patients: serum levels and disease progress. Cancer 33: 1246PubMedCrossRefGoogle Scholar
  110. Stoler A, Bouck N (1985) Identification of a single chromosome in the normal human genome essential for suppression of hamster cell transformation. Proc Natl Acad Sci USA 82: 570–574PubMedCrossRefGoogle Scholar
  111. Sugarbaker PH, Zamcheck N, Moore FD (1976) Assessment of serial carcinoembryonic antigen (CEA) assays in postoperative detection of recurrent colorectal cancer. Cancer 38: 2310PubMedCrossRefGoogle Scholar
  112. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanism of activation of a human oncogene. Nature 300: 143–149PubMedCrossRefGoogle Scholar
  113. Tatarinov YS (1966) Content of embryo-specific alpha-globulin in fetal and neonatal sera from adult humans with primary carcinoma of the liver. Fed Proc [SupplJ 25: 344Google Scholar
  114. Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Broach J, etal . (1985) In yeast RAS proteins are controlling elements of the cyclic AMP pathway. Cell 40: 27 - 36PubMedCrossRefGoogle Scholar
  115. Todaro CJ, Delarco JE, Cohen S (1976) Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature 264: 26PubMedCrossRefGoogle Scholar
  116. Todaro GJ, Fryling CM, Delarco JE (1980) Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc. Nat! Acad Sci USA 77: 5258CrossRefGoogle Scholar
  117. Twardzik DR, Ranchalis JE, Todaro GJ (1982) Mouse embryonic transforming growth factors related to those isolated from tumor cells. Cancer Res 42: 590–593PubMedGoogle Scholar
  118. Vaitukaitus JL (1978) Tumors and human chorionic gonadtropin. In: Ruddon RW (ed) Biological markers of neoplasia: basics and applied aspects. Elsevier/North-Holland, New York, p 317Google Scholar
  119. Vincent RG, Chu TM, Lane WW (1979) The value of carcinoembryonic antigen in patients with carcinoma of the lung. Cancer 44: 685PubMedCrossRefGoogle Scholar
  120. Vincent RJ, Chu TM (1973) Carcinoembryonic antigen in patients with carcinoma of the lung. J Thorac Cardiovasc Surg 66: 230Google Scholar
  121. Waalkes TP, Abeloff MD, Woo KB, Ettinger DS, Ruddon RW, Aldenderfer P (1980) Carcinoembryonic antigen for monitoring patients with small cell carcinoma of the lung during treatment. Cancer Res 40: 4420PubMedGoogle Scholar
  122. Waldmann TA, McIntire KR (1974) The use of a radioimmunoassay for alpha-fetoprotein in the diagnosis of malignancy. Cancer 34: 1510PubMedCrossRefGoogle Scholar
  123. Whang-Peng J, San-Kao CS, Lee CE, Bunn PA, Carney DN, Yazdor AF, Minna JD (1982) Specific chromosome defect associated with human small cell lung cancer: deletion 3p(14-23). Science 215: 181–182PubMedCrossRefGoogle Scholar
  124. Whiteside TL, Dekker A (1979) Diagnostic significance of carcinoembryonic antigen levels in serous effusions. Acta Cytol (Baltimore) 23: 443PubMedGoogle Scholar
  125. Wong AJ, Ruppert JM, Eggleston J, Hamilton SR, Baylin SB, Vogelstein B (1986) Gene amplification of c-myc and Nmyc in small cell carcinoma of the lung. Science 233: 461–464PubMedCrossRefGoogle Scholar
  126. Wood CB, Ratcliffe JG, Burt RW, Malcolm AJH, Blumgart LH (1980) The clinical significance of the pattern of elevated serum carcinoembryonic antigen (CEA) levels in recurrent colorectal cancer. Br J Surg 67: 46PubMedCrossRefGoogle Scholar
  127. Yap BS; Yap HY, Fritsche HA, Blumenschein G, Bodey GP (1980) CSF carcinoembryonic antigen in meningeal carcinomatosis from breast cancer. JAMA 244: 1601PubMedCrossRefGoogle Scholar
  128. Yuasa Y, Srivastava SK, Dunn CY, Rhim JS, Reddy EP, Aaronson SA (1983) Acquisition of transforming properties by alternative point mutations within c-has/bas human protooncogene. Nature 303: 775–779PubMedCrossRefGoogle Scholar
  129. Zondek B (1930) Versuch einer biologischen (hormonalen) Diagnostik beim malignen Hodentumor. Chirurg 2: 1072–1073Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Frank B. Gelder
    • 1
  • Valerian B. Pinto
    • 2
  1. 1.Louisiana State University Medical CenterShreveportUSA
  2. 2.Department of Microbiology/ImmunologyLouisiana State University Medical CenterShreveportUSA

Personalised recommendations