Skip to main content

Neurotransmitter und Neuropeptide in den Basalganglien des Menschen

  • Conference paper
Katatone und dyskinetische Syndrome
  • 29 Accesses

Zusammenfassung

Psychiatrische Erkrankungen zeigen z. T. sehr ausgeprägte motorische Begleitphänomene. Eine der schwerwiegendsten motorischen Störungen bei einer psychiatrischen Erkrankung ist die maligne Katalepsie bei schizophrenen Psychosen. Die neuronalen Prozesse, die zu dieser Störung führen, sind noch weitgehend ungeklärt (s. Spieß-Kiefer, in diesem Buch S. 171). Bei der Ratte wurde experimentell eine der Katalepsie vergleichbare Starre durch die Gabe von Opiaten bzw. Opioidpeptiden erzeugt; diese Starre läßt sich durch die Gabe des Opiatantagonisten Naloxon aufheben (Guillemin et al. 1977). Da insbesondere in den Basalganglien eine große Zahl von Opioidpeptide enthaltenden Neuronen gefunden wurde (Gramsch et al. 1979; Khachaturian et al. 1985), ist die Kenntnis der in den Basalganglien von Mensch und subhumanen Primaten nachweisbaren Neuropeptide und Neurotransmitter und ihrer Rezeptoren von großem Interesse für die Aufklärung neuronaler Mechanismen „extrapyramidal-motorischer“ Störungen, die einerseits bei Psychosen beobachtet werden, andererseits als ungewollte Nebenerscheinungen bei der Behandlung von Psychosen mit Neuroleptika auftreten.

Mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft (We 608/ 8–2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Agid K, Javoy-Agid F (1985) Peptides and Parkinson’s disease. Trends Neurosci 8:30–35

    Article  CAS  Google Scholar 

  • Aronin N, Cooper PE, Lorenz LJ, Bird ED, Sagar SM, Leeman SE, Martin JB (1983) Somatostatin is increased in the basal ganglia in Huntington’s disease. Ann Neurol 13:519–526

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Bird ED, Langglais PY, Martin JB (1984) Somatostatin is increased in the nucleus accumbens in Huntington’s disease. Neurology 34:663–666

    PubMed  CAS  Google Scholar 

  • Beal MF, Growdon JH, Mazurek MF, Martin JB (1986) CSF somatostatin-like immunoreac-tivity in dementia. Neurology 36 (2):294–297

    PubMed  CAS  Google Scholar 

  • Beal MF, Growdon JH, Mazurek MF, McEntee WJ, Martin JB (1984) CSF somatostatin in dementia. Neurology 34:120

    Google Scholar 

  • Beal MF, Mazurek MF, Black PB, Martin JB (1985) Human cerebrospinal fluid somatostatin in neurologic disease. J Neurol Sci 71:91–104

    Article  PubMed  CAS  Google Scholar 

  • Bird ED (1980) Chemical pathology of Huntingtons disease. Annu Rev Pharmacol Toxicol 20:533–551

    Article  PubMed  CAS  Google Scholar 

  • Chesselet MF, Reisine TD (1983) Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei. J Neurosci 3:232–236

    PubMed  CAS  Google Scholar 

  • Cramer H, Köhler J, Oepen G, Schomberg G, Schröter E (1981) Huntingtons chorea mea surements of somatostatin, substance P, and cyclic nucleotides in the cerebrospinal fluid. J. Neurol 225:183–187

    Article  PubMed  CAS  Google Scholar 

  • Dawbarn D, DeQuidt ME, Emson PC (1985) Survival of basal ganglia neuropeptide Y/ somatostatin neurons in Huntingtons disease. Brain Res 340:251–260

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR, Alexander GE (1987) The basal ganglia and sensorymotor integration. In: Struppler A, Weindl A (eds) Clinical aspects of sensory motor integration. Advances in Applied Neurological Sciences, Vol 4. Springer, Berlin Heidelberg New York Tokyo, pp 203–211

    Chapter  Google Scholar 

  • DiFiglia M, Aronin N (1984) Quantitative electron microscopic study of immunreactive somatostatin axons in the rat neostriatum. Neurosci Lett 50:325–331

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M, Aronin N, Martin JB (1982) The light and electron microscopic localization of immunoreactive somatostatin in the rat caudate nucleus. J Neurosci 9:1267–1274

    Google Scholar 

  • DiFiglia M, Pasik P, PasikT(1980) Ultrastructure of Golgi-impregnated and gold-toned spiny and aspiny neurons in the monkey neostriatum. J Neurocytol 8:471–492

    Article  Google Scholar 

  • Dupont E, Christensen SE, Hansen AP, DeFine Olivarius B, Orskov H (1982) Low cerebrospinal fluid somatostatin in Parkinson’s disease: An irreversible abnormality. Neurology 32:312–314

    PubMed  CAS  Google Scholar 

  • Emson PC, Rehfeld JF, Langevin H, Rossor M (1980) Reduction in cholecystokinin-like immunoreactivity in the basal ganglia in Huntingtons disease. Brain Res 198:497–500

    Article  PubMed  CAS  Google Scholar 

  • Epelbaum J, Ruberg M, Moyse E, Javoy-Agid F, Dubois B, Agid Y(1983) Somatostatin and dementia in Parkinson’s disease. Brain Res 278:376–379

    Article  PubMed  CAS  Google Scholar 

  • Ferrante RJ, Kowall NW, Beal MF, Richardson EP, Bird ED, Martin JB (1985) Selective sparing of a class of striatal neurons in Huntingtons disease. Science 230:561–563

    Article  PubMed  CAS  Google Scholar 

  • Ferrier IN, Roberts GW, CrowTJ et al. (1983) Reduced cholecystokinin-like and somatostatin-like immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia. Life Sci 33:475–483

    Article  PubMed  CAS  Google Scholar 

  • Fink S, Martin JB (1984) Behavioral effects of intrastriatal infusions of somatostatin and somatostain analogues. Neurosci (Abstr) 10:174

    Google Scholar 

  • Francis PT, Bowen DM, Neary D, Palo J,Wikstrom J, Olney J (1984) Somatostatin-like immunoreactivity in lumbar cerebrospinal fluid from neurohistologically examined demented patients. Neurobiol Aging 5:183–186

    Article  PubMed  CAS  Google Scholar 

  • Gerner RH, Yamada T (1982) Altered neuropeptide concentrations in cerebrospinal fluid of psychiatric patients. Brain Res 238:298–302

    Article  PubMed  CAS  Google Scholar 

  • Gold PW, Kaye W, Robertson GL et al. (1983) Abnormalities in plasma and cerebrospinal fluid arginine vasopressin in patients with anorexia nervosa. N Engl J Med 308:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Gramsch C, Höllt V, Mehraein P et al. (1979) Regional distribution of methionine-enkephalin-and beta-endorphin-like immunoreactivity in human brain and pituitary. Brain Res 171:261–270

    Article  PubMed  CAS  Google Scholar 

  • Graveland GA, Williams RS, DiFiglia M (1985 a) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntingtons disease. Science 227:770–773

    Article  PubMed  CAS  Google Scholar 

  • Graveland GA, Williams RS, DiFiglia M (1985 b) A Golgi study of the human striatum. Neurons and afferent fibers. J Comp Neurol 234:317–333

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (1986) Neuropeptides in basal ganglia. In: Martin JB, Barchas JD (eds) Neuropeptides in neurology and psychiatric disease. Raven Press, New York, pp 135–161

    Google Scholar 

  • Graybiel AM, Ragsdale CW (1978) Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Ragsdale CW (1983) Biochemical anatomy of the striatum. In: Emson PC (eds) Chemical neuroanatomy. Raven Press, New York, pp 427–504

    Google Scholar 

  • Guillemin R, Ling N, Lazarus L et al. (1977) The endorphins, novel peptides of brain and hypophysial origin, with opiate-like activity: Biochemical and biologic studies. Ann NY Acad Sci 297:131–157

    Article  PubMed  CAS  Google Scholar 

  • Jackson IMD (1988) Significance and function of neuropeptides in cerebrospinal fluid. In: Wood JH (ed) Neurobiology of cerebrospinal fluid. Plenum, New York, pp 625–650

    Google Scholar 

  • Khachaturian H, Lewis ME, Schäfer MKH, Watson SJ (1985) Anatomy of the opioid system. Trends Neurosci 8:111–119

    Article  CAS  Google Scholar 

  • Kohler J, Schröter E, Cramer H (1982) Somatostatin-like immunoreactivity in the cerebros pinal fluid of neurological patients. Arch Psychiatr Nervenkr 231:503–508

    Article  PubMed  CAS  Google Scholar 

  • Kowall N, Martin JB (1987) Patterns of cell loss in Huntington’s disease. Trends Neurosci 10:24–29

    Article  Google Scholar 

  • Mackay AVP, Iversen LL, Rossor M et al. (1982) Increased dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 39:991–992

    Article  PubMed  CAS  Google Scholar 

  • Martin JB, Reichlin S. (1987) Clinical neuroendocrinology, 2nd edn. Davis, Philadelphia

    Google Scholar 

  • Mauborgne A, Javoy-Agid F, Legrand JC et al. (1983) Decrease of substance P-like immunoreactivity in the substantia nigra and pallidum of parkinsonian brains. Brain Res 268:167–170

    Article  PubMed  CAS  Google Scholar 

  • Mezey E, Palkovits M (1982) Two-way transport in hypothalamo-hypophyseal system. Front Neuroendocrinol 7:1

    CAS  Google Scholar 

  • Moroni F, Lombardi G, Moneti G, Aldino C (1984) The excitotoxin quinolinic acid is present in the brain of several mammals and its cortical content increases during the aging process. Neurosci Lett 47:51–55

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Widerlov E, Bissette G et al. (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–1344

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Youngblood WW, Manberg PJ, Prange AJ, Kizer JS (1983) Regional brain concentration of neuropeptides in Huntington’s disease and schizophrenia. Science 221:972–975

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, Van Huijzen C (1988) The Human Nervous System. A Synopsis and Atlas. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Oldfield EH, Schulte HM, Chrousos GP et al. (1985) Active clearance of corticotropin-releasing factor from the cerebrospinal fluid. Neuroendocrinology 40:84–87

    Article  PubMed  CAS  Google Scholar 

  • Oertel WH, Struppler A (1987) Immunohistochemical studies on neurotransmitters in rat basal ganglia. In: Struppler A, Weindl A (eds.) Clinical aspects of sensory motor integration. Advances in Applied Neurological Sciences, Vol 4. Springer, Berlin Heidelberg New York, pp 216–220

    Chapter  Google Scholar 

  • Pardridge WM (1983) Neuropeptides and the blood-brain barrier. Ann Rev Physiol 45:73–82

    Article  CAS  Google Scholar 

  • Patel YC, Rao K, Reichlin S (1977) Somatostatin in human cerebrospinal fluid. N Engl J Med 296:529–533

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Gold R, Rubinow DR, Ballenger JC, Bunney WE jr, Goodwin FK (1982) Peptides in the cerebrospinal fluid of neuropsychiatric patients: An approach to central nervous system peptide function. Life Sci 31:1–15

    Article  PubMed  CAS  Google Scholar 

  • Rehfeld JF, Kruse-Larsen C (1978) Gastrin and cholecystokinin in human cerebrospinal fluid. Immunochemical determination of concentrations and molecular heterogeneity. Brain Res 155:19–26

    Article  PubMed  CAS  Google Scholar 

  • Rossor MN, Hunt SP, Iversen LL et al. (1982) Extrahypothalamic vasopressin is unchanged in Parkinson’s disease and Huntington’s disease. Brain Res 253:341–343

    Article  PubMed  CAS  Google Scholar 

  • Rubinow DR, Gold PW, Post RM, Ballenger JC, Cowdry R, Bollinger J, Reichlin S (1983) CSF somatostatin in affective illness. Arch Gen Psychiatry 40:409–412

    Article  PubMed  CAS  Google Scholar 

  • Serby M, Richardson SB,Twente S, Siekerski J, Corwin J, Rotrosen J (1984) CSF somatostatin in Alzheimer’s disease. Neurobiol Aging 5:187–189

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Whetsell WD, Mangano RM (1983) Quinolinic acid: An endogenous metabolite that produces axon sparing lesions in rat brain. Science 219:316–318

    Article  PubMed  CAS  Google Scholar 

  • Soininen HS, Jolkkonen JT, Reinikainen KG, Halonen TO, Riekkinen PJ (1984) Reduced cholinesterase activity and somatostatin-like immunoreactivity in the cerebrospinal fluid of patients with dementia of the Alzheimer type. J Neurol Sci 63:167–172

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Smith AD (1979) Projection of neostriatal spiny neurons to the substantia nigra. Application of a combined Golgi-staining and horseradish peroxidase transport proce dure at both light and electron microscopic levels. Brain Res 178:3–15

    Article  PubMed  CAS  Google Scholar 

  • Sörensen KV, Christensen SE, Hansen AP, Ingerslev J, Pedersen E, Orskov H (1981) The origin of cerebrospinal fluid somatostatin: Hypothalamic or dispersed central nervous system secretion? Neuroendocrinology 32:335–338

    Article  PubMed  Google Scholar 

  • Sourkes TL (1981) Parkinson’s disease and other disorders of the basal ganglia. In: Siegel GJ, Albes RW, Agranoff BW, Katzman R (eds) Basic neurochemistry, 3rd edn. Boston, Little Brown pp 719–733

    Google Scholar 

  • Stevens IR (1973) An anatomy of schizophrenia. Arch Gen Psychiatry 29:177–189

    Article  PubMed  CAS  Google Scholar 

  • Studier JM, Javoy-Agid F, Cesselin F et al. (1982) CCK-8 immunoreactivity distribution in human brain: Selective decrease in the substantia nigra from Parkinsonian patients. Brain Res 243:176–179

    Article  Google Scholar 

  • Vincent SR, Johansson O (1983) Striatal neurons containing both somatostatin-and avian pancreatic polypeptide (APP)-like immunoreactivities and NADPH-diaphorase activity. A light and electron microscopic study. J Comp Neurol 217:264–270

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Johansson O, Hökfelt T (1983) NADPH-diaphorase: A selective histochemical marker for striatal neurons containing both somatostatin -and avian pancreatic polypeptide (APP) -like immunoreactivities. J Comp Neurol 217:252–263

    Article  PubMed  CAS  Google Scholar 

  • Weindl A (1983) The blood-brain barrier and its role in the control of circulating hormone effects on the brain. In: Ganten D, Pfaff D (eds) Current topics in neuroendocrinology, Vol 3. Springer, Berlin-Heidelberg New York Tokyo, pp 151–186

    Google Scholar 

  • Weindl A, Unger J, Schwartzberg M, Triepel J, Lange W, Struppler A (1987) Neuropeptides in central movement disorders of man. In: Stuppler A, Weindl A (eds) Clinical aspects of sensory motor integration. Advances in Applied Neurological Scienees, Vol 4. Springer, Berlin Heidelberg New York Tokyo, pp 229–239

    Chapter  Google Scholar 

  • Wermuth B (1981) Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J Biol Chem 56:1206–1213

    Google Scholar 

  • Wood JH (1982) Neuroendocrinology of cerebrospinal fluid: Peptides, steroids and other hormones. Neurosurgery 11:293–305

    Article  PubMed  CAS  Google Scholar 

  • Wood PL, Etienne P, Lal S, Gauthier S, Cajal S, Nair NPV (1982) Reduced lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci 31:2073–2079

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weindl, A. (1989). Neurotransmitter und Neuropeptide in den Basalganglien des Menschen. In: Hippius, H., Rüther, E., Schmauss, M. (eds) Katatone und dyskinetische Syndrome. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83654-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83654-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50501-3

  • Online ISBN: 978-3-642-83654-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics