Skip to main content

The Transformation-Suppressive Function Is Lost in Tumorgenic Cells and Is Restored upon Transfer of a Suppressor Gene

  • Conference paper
Endocrine Therapy and Growth Regulation of Breast Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 113))

Abstract

Multiple genetic changes are involved in the conversion of a normal cell into a malignant cell. The nature of genetic alterations in tumor cells has been analyzed by DNA transfection experiments and dominantly acting cellular oncogenes have been identified. The introduction of single activated oncogenes into immortalized cell lines such as mouse NIH/3T3 cells is sufficient for tumorigenic transformation. The requirements for malignant transformation of nonimmortalized, diploid cells are more complex in as much as combinations of oncogenes (e.g. ras and myc genes) or overexpression of single oncogenes and additional genetic alterations are needed (for review see Bishop 1987). Cell-cell fusion experiments have shown that the normal phenotype is restored in somatic cell hybrids of tumorigenic cell lines and normal cells (suppression of malignancy, for review see Klein 1987; Sager 1986; Schäfer 1987). We have demonstrated that rat embryo fibroblasts which have often been used as recipient cells for the introduction of “dominant-acting” oncogenes are still capable of suppressing the neoplastic phenotype when fused with a H-ras transformed rat cell line. The neoplastic phenotype is re-expressed in hybrids which have lost chromosomes (Griegel et al. 1986). These results suggest that a tumor suppressor gene expressed in normal cells is able to counteract the neoplastic transformation induced by a ras gene and that the loss or inactivation of the suppressor gene is a prerequisite for the transforming activity of the oncogene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bishop JM (1987) The molecular genetics of cancer. Science 237: 305–311

    Article  Google Scholar 

  • Blochlinger K, Diggelmann H (1984) Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells. Mol Cell Biol 4: 2929–2931

    PubMed  CAS  Google Scholar 

  • Collett MS, Erikson RL (1978) Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA 75: 2012–2024

    Article  Google Scholar 

  • Craig R, Sager R (1985) Suppression of tumorigenicity in hybrids of normal and oncogene-transformed CHEF cells. Proc Natl Acad Sci USA 82: 2062–2066

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ, Willecke K (1977) Segregation of human hypoxanthine phosphoribosyltransferase activity from somatic cell hybrids isolated after fusion of mouse gene transfer cells with Chinese hamster cells. MGG 154: 191–197

    PubMed  CAS  Google Scholar 

  • DeLorbe WJ, Luciw PA, Goodman HM, Varmus HE, Bishop JM (1980) Molecular cloning and characterization of avian sarcoma virus circular DNA molecules. J Virol 36: 50–61

    Google Scholar 

  • Dyson PJ, Quade K, Wyke JA (1982) Expression of the ASV src gene in hybrids between normal and virally transformed cells: Specific suppression occurs in some hybrids but not others. Cell 30: 491–498

    Google Scholar 

  • Franza BR jr, Maruyama K, Garrels JI, Ruley HE (1986) In vitro establishment is not a sufficient prerequisite for transformation by activated ras oncogenes. Cell 44: 409–418

    Article  PubMed  CAS  Google Scholar 

  • Geiser AG, Der CH, Marshall CJ, Stanbridge EJ (1986) Suppression of tumorigenicity with continuous expression of the c-Ha-ras oncogene in EJ bladder carcinoma-human fibroblast hybrids. Proc Natl Acad Sci USA 83: 5209–5213

    Article  PubMed  CAS  Google Scholar 

  • Griegel D, Traub O, Willecke K, Schäfer R (1986) Suppression and reexpression of transformed phenotype in hybrids of Ha-ras 1 transformed Rat-1 cells and early passage rat embryo fibroblasts. Int J Cancer 38: 697–705

    Article  PubMed  CAS  Google Scholar 

  • Haynes JR, Downing JR (1988) A recessive cellular mutation in v-fes-transformed mink cells restores contact inhibition and anchorage-dependent growth. Mol Cell Biol 8: 2419–2427

    PubMed  CAS  Google Scholar 

  • Hunter T, Sefton BM, Beemon K (1979) Studies on the structure and function of the avian sarcoma virus transforming-gene product. Symposia on Quantitative Biology, vol 44. Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, pp 931–941

    Google Scholar 

  • Klein G (1987) The approaching era of the tumor suppressor genes. Science 238: 1539–1545

    Article  PubMed  CAS  Google Scholar 

  • Koi M, Barrett JC (1986) Loss of tumor-suppressive function during chemically induced neoplastic progression of Syrian hamster embryo cells. Proc Natl Acad Sci USA 83: 5992–5996

    Article  PubMed  CAS  Google Scholar 

  • Littlefield JW (1964) Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145: 709–710

    Article  PubMed  CAS  Google Scholar 

  • Marshall CJ (1980) Suppression of the transformed phenotype with retention of the viral “src” gene in cell hybrids between Rous sarcoma virus-transformed rat cells and untransformed mouse cells. Exp Cell Res 127: 373–384

    Article  PubMed  CAS  Google Scholar 

  • Mulligan RC, Berg P (1981) Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc Natl Acad Sci 78: 2072–2076

    Article  PubMed  CAS  Google Scholar 

  • Naharro G, Tronick SR, Rasheed S, Gardner MB, Aaronson SA, Robbins KC (1983) Molecular cloning of integrated Gardner-Rasheed feline sarcoma virus: Genetic structure of its cell-derived sequence differs from that of other tyrosine kinase-coding one genes. J Virol 47: 611–619

    Google Scholar 

  • Noda M, Selinger Z, Scolnick EM, Bassin RH (1983) Flat revertants isolated from Kisten sarcoma virus-transformed cells are resistant to the action of specific oncogenes. Proc Natl Acad Sci USA 80: 5602–5606

    Article  PubMed  CAS  Google Scholar 

  • Quade K (1979) Transformation of mammalian cells by avian myelocytomatosis virus and avian erythroblastosis virus. Virology 98: 461–465

    Article  PubMed  CAS  Google Scholar 

  • Redmond SMS, Friis RR, Reichmann E, Müller RG, Groner B, Hynes NE (1988) The transformation of primary and established mouse mammary epithelial cells by p21-ras is concentration-dependent. Oncogene 2: 259–265

    PubMed  CAS  Google Scholar 

  • Sager R (1986) Genetic suppression of tumor formation: A new frontier in cancer research. Cancer Res 46: 1573–1580

    PubMed  CAS  Google Scholar 

  • Schäfer R (1987) Suppression of the neoplastic phenotype and “anti-oncogenes”. Blut 54: 257–265

    Article  PubMed  Google Scholar 

  • Schäfer R, Hoffmann H, Willecke K (1983) Suppression of tumorigenicity in somatic cell hybrids of tumorigenic Chinese hamster cells and diploid mouse fibroblasts: Dependence on the presence of at least three different mouse chromosomes and independence of hamster genome dosage. Cancer Res 43: 2240–2246

    Google Scholar 

  • Schäfer R, Iyer J, Iten E, Nirkko AC (1988) Partial reversion of the transformed phenotype in HRAS-transfected tumorigenic cells by transfer of a human gene. Proc Natl Acad Sci USA 85: 1590–1594

    Article  Google Scholar 

  • Schaffner W, Weissmann C (1973) A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem 56: 502–514

    Article  PubMed  CAS  Google Scholar 

  • Smith MR, DeGudicibus, Stacey DW (1986) Requirement for c-ras proteins during viral oncogene transformation. Nature 320: 540–543

    Article  PubMed  CAS  Google Scholar 

  • Southern PJ, Berg P (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1: 327–341

    PubMed  CAS  Google Scholar 

  • Szybalska EH, Szybalski W (1962) Genetics of human cell lines: IV. DNA-mediated heritable transformation of a biochemical trait. Proc Natl Acad Sci USA 48: 2026–2034

    Google Scholar 

  • Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanism of activation of a human oncogene. Nature 300: 143–149

    Article  PubMed  CAS  Google Scholar 

  • Wigler M, Pellicer A, Silverstein S, Axel R (1978) Biochemical transfer of single-copy eukaryotic genes using total cellular DNA as donor. Cell 14: 725–731

    Article  PubMed  CAS  Google Scholar 

  • Zarbl H, Latreille J, Jolicoeur P (1988) Revertants of v-fos-transformed fibroblasts have mutations in cellular genes essential for transformation by other oncogenes. Cell 51: 357–369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iten, E., Ziemiecki, A., Schäfer, R. (1989). The Transformation-Suppressive Function Is Lost in Tumorgenic Cells and Is Restored upon Transfer of a Suppressor Gene. In: Eppenberger, U., Goldhirsch, A. (eds) Endocrine Therapy and Growth Regulation of Breast Cancer. Recent Results in Cancer Research, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83638-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83638-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83640-4

  • Online ISBN: 978-3-642-83638-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics