Skip to main content

Protrusive Activity of the Cell Surface and the Movements of Tissue Cells

  • Conference paper
Biomechanics of Active Movement and Deformation of Cells

Part of the book series: NATO ASI Series ((ASIH,volume 42))

Abstract

Summary: The locomotion of the body’s component cells depends upon the formation of three classes of protrusions from the cell surface. These protrusions have been studied primarily in tissue culture, where they all form preferentially along the leading margins of crawling cells. They differ from one another in shape: flattened protrusions are called “lamellipodia” (or “ruffles”); rounded protrusions are called “lobopodia” (or “blebs”); while the third class consists of narrow, stiff rods called “filopodia” (or “microspikes”). These are actively pushed out from the cell surface, although some then form adhesions to the substratum or to other cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abercrombie M (1961) The bases of the locomotory behavior of fibroblasts. Exp Cell Res Supplement 8: 188–198

    Article  Google Scholar 

  • Abercrombie M (1980) The crawling movements of metazoan cells. Proc Royal Soc London (Biol) 207: 129–147

    Article  Google Scholar 

  • Abercrombie M, Ambrose EJ (1958) Interference microscope studies of cell contacts in tissue culture. Exp Cell Res 15: 332–345

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie M, Heaysman JEM (1953) Observations on the social behaviour of cells in tissue culture I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp Cell Res 5: 111–131

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie M, Heaysman JEM, Pegrum SM (1970a) The locomotion of fibroblasts in culture I. Movements of the leading edge. Exp Cell Res 59: 393–398

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie M, Heaysman JEM, Pegrum SM (1970b) The locomotion of fibroblasts in culture II. ‘Ruffling’. Exp Cell Res 60: 437–444

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie M, Heaysman JEM, Pegrum SM (1970c) The locomotion of fibroblasts in culture III. Movements of particles on the dorsal surfaces of the leading lamella. Exp Cell Res 62: 389–398

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie M, Heaysman JEM, Pegrum SM (1971) The locomotion of fibroblasts in culture IV. Electron microscopy of the leading lamella. Exp Cell Res 67: 359–367

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie M, Heaysman JEM, Pegrum SM (1972) The locomotion of fibroblasts in culture V. Surface marking with concanavalin A. Exp Cell Res 73: 536–539

    Article  PubMed  CAS  Google Scholar 

  • Albrecht-Büehler G (1976) Filopodia of spreading 3T3 cells. Do they have a substratum exploring function? J Cell Biol 69: 275–281

    Article  PubMed  Google Scholar 

  • Albrecht-Büehler G, Bushnell A (1982) Reversible compression of cytoplasm. Exp Cell Res 140: 173–189

    Article  PubMed  Google Scholar 

  • Albrecht-Büehler G, Goldman R (1976) Microspike mediated particle transport towards the cell body during early spreading of 3T3 cells. Exp Cell Res 97: 329–339

    Article  PubMed  Google Scholar 

  • Albrecht-Büehler G, Lancaster RM (1976) A quantitative description of the extension and retraction of surface protrusions in spreading 3T3 mouse fibroblasts. J Cell Biol 71: 370–382

    Article  PubMed  Google Scholar 

  • Ambrose EJ (1961) The movements of fibrocytes. Exp Cell Res Suppl. 8: 54–71

    Article  Google Scholar 

  • Bereiter-Hahn, J (1987) Mechanical principles of architecture of eucaryotic cells. In: Anderson OR, Reif W-E (eds) Cytomechanics: The mechanical basis of cell form and structure. Springer, Berlin, p 3

    Google Scholar 

  • Berlin RD, Oliver JM (1982) The movement of bound ligands over cell surfaces. J Theoretical Biol 99: 69–80

    Article  CAS  Google Scholar 

  • Bershadski AD, Vasiliev, JM (1988) Cytoskeleton. Plenum Press, New York.

    Google Scholar 

  • Bourguignon LY, Singer SJ (1977) Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci USA 74: 5031–5035

    Article  PubMed  CAS  Google Scholar 

  • Bray D (1970) Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci USA 65: 905–910

    Article  PubMed  CAS  Google Scholar 

  • Bray D (1973) Model for membrane movements in the neural growth cone. Nature 244: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Bray D, Chapman K (1985) Analysis of microspike movements on the neuronal growth cone. J Neurosciences 5: 3204–3213

    CAS  Google Scholar 

  • Bretscher MS (1976) Directed lipid flow in cell membranes. Nature 260: 905–914

    Article  Google Scholar 

  • Bretscher MS (1984) Endocytosis: relation to capping and cell locomotion. Science 224: 681–686

    Article  PubMed  CAS  Google Scholar 

  • Bretscher MS (1989) Endocytosis and recycling of the fibronectin receptor in CHO cells. EMBO J 8: 1341–1348

    PubMed  CAS  Google Scholar 

  • Burridge K (1986) Substrate adhesions in normal and transformed fibroblasts: Oragnization and regulation of cytoskeletal, membrane and extracellular matrix components at focal contacts. Cancer Rev 4: 18–78

    Google Scholar 

  • Chen W-T (1989) Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J Exp Zool 251: 167–185

    Article  PubMed  CAS  Google Scholar 

  • Davies WA, Stossel TP (1977) Peripheral hyaline blebs (podosomes) of macrophages. J Cell Biol 75: 941–955

    Article  PubMed  CAS  Google Scholar 

  • De Brabander M, Nuydens R, Geerts H, Nuyens R, Leunissen J, Jacobson R (1990) Using nanovid microscopy to analyse the movement of cell membrane components in living cells. In: Herman B, Jacobson K (eds) New Developments in Optical Microscopy. Alan R. Liss, New York, in press.

    Google Scholar 

  • De Brabander M, Nuydens R, Geuens G, Moeremans M, De May J (1986) The use of submicroscopic gold particles combined with video contrast enhancement as a simple molecular probe for the living cell. Cell Motility and the Cytoskeleton 6: 105–113

    Article  PubMed  Google Scholar 

  • Dembo M, Harris AK (1981) Motion of particles adhering to the leading lamella of crawling cells. J Cell Biol 91: 528–536

    Article  PubMed  CAS  Google Scholar 

  • DiPasquale A (1975a) Locomotory activity of epithelial cells in culture. Exp Cell Res 94: 191–215

    Article  Google Scholar 

  • DiPasquale A (1975b) Locomotion of epithelial cells: factors involved in extension of the leading edge. Exp Cell Res 95: 425–439

    Article  Google Scholar 

  • Edidin M, Weiss A (1972) Antigen cap formation in cultured fibroblasts: A reflection of membrane fluidity and of cell motility. Proc Natl Acad Sci USA 69: 2456–2459

    Article  PubMed  CAS  Google Scholar 

  • Edds KT (1980) The formation and elongation of filopodia during transformation of sea urchin coelomocytes. Cell Motility 1: 131–140

    Article  PubMed  CAS  Google Scholar 

  • Erickson CA, Trinkaus JP (1976) Microvilli and blebs as sources of reserve surface membrane during cell spreading. Exp Cell Res 99: 375–384

    Article  PubMed  CAS  Google Scholar 

  • Fay FS, Delise, CM (1973) Contraction of isolated smooth-muscle cells — structural changes. Proc Natl Acad Sci USA 70: 641–645

    Article  PubMed  CAS  Google Scholar 

  • Fisher GW, Conrad RL, DeBiasio RL, Taylor DL (1988) Centripetal transport of cytoplasm, actin, and the cell surface in lamellipodia of fibroblasts. Cell Motility and Cytoskeleton 11: 235–247

    Article  CAS  Google Scholar 

  • Forscher P, Smith SJ (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107: 1505–1516

    Article  PubMed  CAS  Google Scholar 

  • Fujinami N (1976) Studies on the mechanism of circus movements in dissociated embryonic cells of a teleost, Oryzias latipes: fine structural observations. J Cell Sci 22: 133–147

    PubMed  CAS  Google Scholar 

  • Gabbiani G, Chaponnier C, Zumbe A, Vassalli P (1977) Actin and tubulin co-cap with surface immunoglobins in mouse B lymphocytes. Nature 269: 697–689

    Article  PubMed  CAS  Google Scholar 

  • Godman GC, Miranda, AF, Deitch, AD, Tanenbaum, SW (1975) Action of cytochalasin D on cells of established lines III. Zeiosis and movements at the cell surface. J Cell Biol 64: 644–667

    Article  PubMed  CAS  Google Scholar 

  • Harris AK (1969) Initiation and propagation of the ruffle in fibroblast locomotion. J Cell Biol 43: 165A

    Google Scholar 

  • Harris AK (1973a) Location of cellular adhesions to solid substrata. Devel Biol 35: 97–114

    Article  CAS  Google Scholar 

  • Harris AK (1973b) Cell surface movements related to cell locomotion. In: Porter R, Fitzsimons DW (ed) Locomotion in Tissue Cells. Ciba foundation Symposium 14 (new series) Elsevier/North Holland Publishing Co. Amsterdam, p 3

    Google Scholar 

  • Harris, AK (1976) Recycling of dissolved plasma membrane components as an explanation of the capping phenomenon. Nature 263: 781–783

    Article  PubMed  CAS  Google Scholar 

  • Harris AK, Dunn G (1973) Centripetal transport of attached particles on both surfaces of moving fibroblasts. Exp Cell Res 73: 519–523

    Article  Google Scholar 

  • Harris AK, Gewalt SL (1989) Simulation testing of mechanisms for inducing the formation of the contractile ring in cytokinesis. J Cell Biol 109: in press

    Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: A new wrinkle in the study of tissue cell locomotion. Science 208: 177–179

    Article  PubMed  CAS  Google Scholar 

  • Heath JP (1983a) Behavior and structure of the leading lamella in moving fibroblasts. I. Occurrence and centripetal movement of arc-shaped microfilament bundles beneath the dorsal cell surface. J Cell Sci 60: 331–354

    PubMed  CAS  Google Scholar 

  • Heath, JP (1983b) Direct evidence for microfilament-mediated capping of surface receptors on crawling fibroblasts. Nature 302: 532–534

    Article  PubMed  CAS  Google Scholar 

  • Hewitt JA (1979) Surf-riding model for cell capping. J Theoretical Biol 80: 115–127

    Article  CAS  Google Scholar 

  • Holifield, BF (1989) Capping on motile fibroblasts: a study of aggregated and non-aggregated membrane proteins. Ph.D. Dissertation, (Dept. of Cell Biology and Anatomy) University of North Carolina, Chapel Hill

    Google Scholar 

  • Holtfreter J (1943) A study of the mechanics of gastrulation; part 1. J Exp Zool 94: 261–318

    Article  Google Scholar 

  • Ingram, VM (1969) A side view of moving fibroblasts. Nature 222: 641–644

    Article  PubMed  CAS  Google Scholar 

  • Isenberg G, Small JV (1979) Particle movements on microspikes. Exp Cell Res 121: 406–411

    Article  PubMed  CAS  Google Scholar 

  • Ishihara A, Holifield B, Jacobson, K (1988) Analysis of lateral redistribution of a monoclonal antibody complex plasma membrane glycoprotein which occurs during cell locomotion. J Cell Biol 106: 329–343

    Article  PubMed  CAS  Google Scholar 

  • Izzard, CS (1974) Contractile filopodia and in vivo cell movements of the ascidian Botryllus schlössen. J Cell Sci 15: 513–535

    PubMed  CAS  Google Scholar 

  • Izzard CS, Lochner, LR (1980) Formation of cell-to-substrate contacts during fibroblast motility: an interference reflection study. J Cell Sci 42: 81–116

    PubMed  CAS  Google Scholar 

  • Johnson KE (1976) Ruffling and locomotion in Rana pipiens gastrula cells. Exp Cell Res 101: 71–77

    Article  PubMed  CAS  Google Scholar 

  • Johnson KE, Adelman MR (1981) Circus movements in dissociated cells in normal and hybrid frog embryos. J Cell Sci 49: 205–216

    PubMed  CAS  Google Scholar 

  • Kauffman S (1974) Phase-dependent lobopodial contact paralysis. Exp Cell Res 86: 217–221

    Article  PubMed  CAS  Google Scholar 

  • Keller RE, Spieth J (1984) Neural crest cell behavior in white and dark larva Ambystoma mexicanum: time-lapse cinemicrographic analysis of pigment cell movements in vivo and in vitro. J. Exp. Zool. 229: 109–126

    Article  PubMed  CAS  Google Scholar 

  • Kleitman N, Johnson MI (1989) Rapid growth cone translocation on laminin is supported by lamellipodial structures. Cell Motility and the Cytoskeleton 13: 288–300

    Article  PubMed  CAS  Google Scholar 

  • Koda LY, Partlow LM (1976) Membrane marker movement on sympathetic axons in tissue culture. J Neurobiology 7: 157–172

    Article  CAS  Google Scholar 

  • Marcus PI (1962) Dynamics of surface modification in myxovirus-infected cells. Cold Spring Harbor Symposium on Quantitative Biology 27: 351–365

    CAS  Google Scholar 

  • McCaig CD (1989) Nerve growth in the absence of growth cone filopodia and the effects of a small applied electric field. J Cell Sci 93: 715–721

    PubMed  Google Scholar 

  • Mendoza G, Metzgar H (1976) Distribution and valency of receptor for IGE on rodent mast cells and related tumor cells. Nature 264: 548–550

    Article  PubMed  CAS  Google Scholar 

  • Middleton CA (1976) Contact induced spreading is a new phenomenon depending on cell contact. Nature 259: 311–313

    Article  PubMed  CAS  Google Scholar 

  • Middleton CA (1979) Cell-surface labelling reveals no evidence for membrane assembly and disassembly during fibroblast locomotion. Nature 282: 203–205

    Article  PubMed  CAS  Google Scholar 

  • Nakai J (1956) Dissociated dorsal root ganglia in tissue culture. Am J Anat 99: 81–99

    Article  PubMed  CAS  Google Scholar 

  • Nakai J (1960) Studies on the mechanism determining the course of nerve fibers in tissue culture II. The mechanism of fasciculation. Z Zellforsch 52: 427–449

    Article  PubMed  CAS  Google Scholar 

  • Nakai J (1979) The movement of the neuron; elongation and retraction of nerve fiber and filopodia. In: Hatano S, Ishikawa H, Sato H (ed) Cell Motility: Molecules and Organization. Univ. Park Press, Baltimore MD. p 263

    Google Scholar 

  • Nakai J, Kawasaki Y (1959) Studies on the mechanism determining the course of a nerve fiber in culture. I. The reaction of the growth cone to various obstructions. Z Zellforsch Mikrosk Anat 51: 108–122

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi R (1979) Cinematographic analysis of ruffling movement of L cells. In: Hatano S, Ishikawa H, Sato H (ed) Cell Motility: Molecules and Organization. Univ. Park Press, Baltimore MD. p 251

    Google Scholar 

  • Oster GF (1984) On the crawling of cells. J Embryol Exp Morph 83 (suppl): 329–364

    PubMed  Google Scholar 

  • Oster GF (1989) Cell motility and tissue morphogenesis. In: Stein WD, Bronner F (eds) Cell Shape; Determinants, Regulation and Regulatory Role. Academic Press, San Diego, p 33

    Google Scholar 

  • Porter K, Prescott D, Frye J (1973) Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J Cell Biol 57: 813–836

    Article  Google Scholar 

  • Porter K, Todaro G, Fonte V (1973) A scanning electron microscope study of surface features of viral and spontaneous transformants of mouse BALB/3T3 cells. J Cell Biol 59: 633–642

    Article  PubMed  CAS  Google Scholar 

  • Price ZH (1967) The micromorphology of zeitic blebs on cultured human epithelial (HEp) cells. Exp Cell Res 48: 82–92

    Article  PubMed  CAS  Google Scholar 

  • Price ZH (1968) A study of membrane ruffling in cultured cells by time-lapse cinephotography and electron microscopy. J of the Biological Photographic Association 36: 93–99

    CAS  Google Scholar 

  • Rajaraman R, Rounds DE, Yen SP, Rembaum A (1974) A scanning electron microscope study of cell adhesion and spreading in vitro. Exp Cell Res 88: 329–341

    Article  Google Scholar 

  • Ramsey WS (1972) Locomotion of human polymorphonuclear leucocytes in culture. Exp Cell Res 72: 489–501

    Article  PubMed  CAS  Google Scholar 

  • Rinnerthaler G, Geiger B, Small JV (1988) Contact formation during fibroblast locomotion: Involvement of membrane ruffles and microtubules. J Cell Biol 106: 747–760

    Article  PubMed  CAS  Google Scholar 

  • Sheetz, MP, Turney S, Quian H, Elson, EL (1989) Nanometer-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature 340: 284–288

    Article  PubMed  CAS  Google Scholar 

  • Soranno T, Bell, E (1982) Cytoskeletal dynamics of spreading and translocating cells. J Cell Biol 95: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Stopak D, Harris AK (1982) Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Devel Biol 90: 383–398

    Article  CAS  Google Scholar 

  • Stopak D, Wessells, NK, Harris AK (1985) Morphogenetic rearrangement of injected collagen in developing chicken limb buds. Proc Natl Acad Sci USA 82: 2804–2808

    Article  PubMed  CAS  Google Scholar 

  • Svitkina TM, Neyfakh AA Jr, Bershadsky AD (1986) Actin cytoskeleton of spread fibroblasts appears to assemble at the cell edges. J Cell Sci 82: 235–248

    PubMed  CAS  Google Scholar 

  • Tickle C, Trinkaus JP (1976) Observations on nudging cells in culture. Nature 261: 413

    Article  PubMed  CAS  Google Scholar 

  • Tickle C, Trinkaus JP (1977) Some clues as to the formation of protrusion by Fundulus deep cells. J Cell Sci 26: 139–150

    PubMed  CAS  Google Scholar 

  • Toh BH and Hard GC (1977) Actin co-caps with concanavalin A receptors. Nature 269: 695–697

    Article  PubMed  CAS  Google Scholar 

  • Tosney KW, Wessells, NK (1983) Neuronal motility: the ultrastructure of veils and microspikes correlates with their motile activities. J Cell Sci 61: 389–411

    PubMed  CAS  Google Scholar 

  • Trinkaus J P (1980) Formation of protrusions of the cell surface during tissue cell movement. In: Hynes RO, Fox CF [ed], Tumor cell surfaces and malignancy. Progress in clinical and biological research, Vol. 42. Alan R. Liss inc., New York, p 887

    Google Scholar 

  • Trinkaus J P (1984) Cells Into Organs: the forces that shape the embryo, second edition Prentice Hall, Englewood Cliffs New Jersey.

    Google Scholar 

  • Trinkaus J P (1985) Protrusive activity of the cell surface and the initiation of cell movement during morphogenesis. Exp Biol Med 10: 130–173

    Google Scholar 

  • Trinkaus JP, Betchaku T, Krulikowski L S (1971) Local inhibition of ruffling during contact inhibition of cell movement. Exp Cell Res 64: 291–300

    Article  PubMed  CAS  Google Scholar 

  • Trinkaus JP, Erickson CA (1983) Protrusive activity, mode and rate of locomotion, and pattern of adhesion of Fundulus deep cells during gastrulation. J Exp Zool 228: 41–70

    Article  Google Scholar 

  • Turner CE, Newton, MR, Shotton, DM (1988) Cytoskeletal involvement in the sequential capping of rat thymocyte surface glycoproteins. J Cell Sci 89: 309–319

    PubMed  CAS  Google Scholar 

  • Vasiliev J.M. (1985) Spreading of non-transformed and transformed cells. Biochim Biophys Acta 780: 21–65

    PubMed  CAS  Google Scholar 

  • Vasiliev JM, Gelfand IM, Domnina LV, Zacharova OS, Ljubimov AV (1975) Contact inhibition of phagocytosis in epithelial cells sheets: Alterations of cell surface properties induced by cell-cell contact. Proc Natl Acad Sci USA 72: 719–722

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev JM, Gelfand IM, Domnina LV, Dorfman NA, Pletyushkina OY (1976) Active cell edge and movements of concanavalin A receptors of the surface of epithelial and fibroblastic cells. Proc Natl Acad Sci USA 73: 4085–4089

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-L (1985) Exchange of actin subunits at the leading edge of living fibroblasts: possible role for treadmilling. J Cell Biol 101: 597–602

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harris, A.K. (1990). Protrusive Activity of the Cell Surface and the Movements of Tissue Cells. In: Akkaş, N. (eds) Biomechanics of Active Movement and Deformation of Cells. NATO ASI Series, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83631-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83631-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83633-6

  • Online ISBN: 978-3-642-83631-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics