Skip to main content

Thermodynamics and Mechanics of Active Cell Motions

  • Conference paper

Part of the book series: NATO ASI Series ((ASIH,volume 42))

Abstract

Thermodynamics and mechanics of active cell motion is a relatively recent area of research which is experiencing a transition that is brought by the rapid development of the field during the past decade. Roughly speaking, the transition is from collection of biological information from experiments and postulation of physical mechanisms through verbal arguements to quantitation of working hypotheses via mathematical equations and numerical computation of physical parameters. In this paper various biophysical and biochemical bases of active cell motions are briefly reviewed and some particular models are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi, U., Fowler, W. E., Isenberg, G., Pollard, T. D., and Smith, P. R., (1981) Crystalline actin sheets: Their structure and polymerization, J. Cell Blol. 91: 340–351.

    Article  CAS  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., (eds.) (1989) Molecular Biology of the Cell. 2nd ed., Garland Publishing Inc., New York-London.

    Google Scholar 

  • Allen, R. D., Weiss, D. G., Hayden, J. H., Brown, D. T., Fujiwake, H., and Simpson, M., (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: Evidence for an active role of microtubules in cytoplasmic transport, J. Cell Biol. 100: 1736–1752.

    Article  PubMed  CAS  Google Scholar 

  • Bell, G., (1978) Models for the specific adhesion of cells to cells, Science. 200: 618–627.

    Article  PubMed  CAS  Google Scholar 

  • Bell, G., Dembo, M., and Bongrand, P., (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding, Blophys. J. 45: 1051–1064.

    Article  CAS  Google Scholar 

  • Chien, S., Sung, L. A., Sinchon, S., Lee, M. M. L., and Skalak, R., (1984) Energy balance in red cell interactins, Ann. N.Y. Acad. Sci. 416: 138–148.

    Google Scholar 

  • Cooper, J. A., Blum, J. D., and Pollard, T. D., (1984) Acanthamoeba castellanli capping protein: Properties, mechanism of action, immunologic cross-reactivity, and locolization, J. Cell Biol. 99: 217–225.

    Article  PubMed  CAS  Google Scholar 

  • Crank, J., (1984) Free and Moving Boundary Problems. Clarendon Press, Oxford.

    Google Scholar 

  • Dembo, M., (1986) The mechanics of motility in dissociated cytoplasm, Biophys. J. 50: 1165–1183.

    Article  PubMed  CAS  Google Scholar 

  • Dembo, M., (1989) Mechanics and control of the cytoskeleton in Amoeba proteus, Biophys. J. 55: 1053–1080.

    Article  PubMed  CAS  Google Scholar 

  • Dembo, M., and Bell, G., (1987) The themodynamics of cell adhesion, Curr. Topics Mem. Trans. 29: 71–89.

    CAS  Google Scholar 

  • Dembo, M., and Harlow, F., (1986) Cell motion, contractile network, and the physics of interpenetrating reactive flow, Biophys. J. 50: 109–121.

    Article  PubMed  CAS  Google Scholar 

  • Dembo, M., Torney, D. C., Saxman, K., and Hammer, D., (1988) The reaction-limited kinetics of membrane-to-surface adhsion and detachment, Proc. R. Soc. Lond. B, 234: 55–83.

    Article  PubMed  CAS  Google Scholar 

  • Doi, M., and Edwards, S. S., (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford.

    Google Scholar 

  • Dong, C., Skalak, R, Sung, K.-L. P., Schmid-Schönbein, G. W., and Chien, S., (1988) Passive deformation analysis of human leukocytes, J. Bicmech. Engrg. 110: 27–36.

    Article  CAS  Google Scholar 

  • Elzinga, M., Collins, J. H., Kuehl, W. M., and Adelstein, R. S., (1973) Complete amino-acid sequence of actin of rabbit skeletal muscle, Proc. Natl. Acad. Sci. USA 70: 2689–2691.

    Article  Google Scholar 

  • Evans, E., (1985a) Detailed mechanics of membrane-membrane adhesion and separation, I. Continuum of molecular cross-bridges, Biophys. J. 48: 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E., (1985b) Detailed mechanics of membrane-membrane adhesion and separation, II. Discrete kinetically trapped molecular cross-bridges, Biophys. J. 48: 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E., and Leung, A., (1984) Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding, J. Cell Biol. 98: 1201–1208.

    Article  PubMed  CAS  Google Scholar 

  • Frieden, C., (1985) Actin and tubulin polymerization: The use of kinetic methods to determine mechanism, Ann. Rev. Biophys. Chem. 14: 189–210.

    Article  CAS  Google Scholar 

  • Gordon, D. J., Yang, Y.-Z., and Korn, E. D., (1976) Polymerization of Acanthamoeba actin: Kinetics, thermodynamics, and co-polymerization with muscle actin, J. Biol. Chem. 251: 7474–7479.

    PubMed  CAS  Google Scholar 

  • Hartwig, J. H., and Shevlin, P., (1986) The architecture of actin filaments and ultrastructural location of actin-binding protein in the periphery of lung macrophages, J. Cell Biol. 103: 1007–1020.

    Article  PubMed  CAS  Google Scholar 

  • Hill, T. L., (1981) Microfilament or microtubule assembly or disassembly against a force, Proc. Natl. Acad. Sci. USA 78: 5613–5617.

    Article  PubMed  CAS  Google Scholar 

  • Hill, T. L., and Kirschner, M. W., (1982) Subunit treadmilling of microtubules or actin in the presence of cellular barriers: possible conversion of chemical free energy into mechanical work, Proc. Natl. Acad. Sci. USA 79: 480–484.

    Article  Google Scholar 

  • Hirose, Y., Amiya, T., Hirokawa, Y., and Tanaka, T., (1987) Phase transition of submicron gel beads, Macronolecules. 20: 1342–1344.

    Article  CAS  Google Scholar 

  • Janmey, P. A., Petermans, J., Zaner, K. S., Stossel, T. P., and Tanaka, T., (1986) Structure and motility of actin filaments as measured by quasielastic light scattering, viscometry and electron microscopy, J. Biol. Chem. 261: 8357–8362.

    PubMed  CAS  Google Scholar 

  • Kirschner, M., and Mitcheson, T., (1986) Beyond self-assembly from microtubules to morphogenesis, Cell. 45: 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Korn, E. D., (1982) Actin polymerization and its regulation by proteins fron nonmuscle cells, Physiol. Rev. 62: 672–737.

    PubMed  CAS  Google Scholar 

  • Lanni, F., and Ware, B. R., (1984) Detection and characterization of actin monaners, oligomers, and filaments in solution by measurement of fluorescence photobleaching recovery, Biophys. J., 46: 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Lassing, I., and Lindberg, U., (1985) Specific interaction between phosphatidylinositol 4, 5-bisphosphate and profilin, Nature. 314: 472–474.

    Article  PubMed  CAS  Google Scholar 

  • Lozanne, A. De, and Spudich, J. A., (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination, Science. 236: 1086–1091.

    Article  PubMed  Google Scholar 

  • Montague, C., Rhee, K. W., and Carlson F. D., (1983) Measurement of the translational diffusion constant of G-actin by photon correlation spectroscopy, J. Muscle Res. Cell Motil. 4: 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Nicklas, R. B., (1984) A quantitative comparison of cellular motile systems, Cell Motil. 4: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Oosawa, F., (1980) The flexibility of F-actin, Biophys. Chem. 11: 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Oster, G. F., (1989) Cell motility and tissue morphogenesis, In: Cell Shape: Determinants, Regulation and Regulatory Role. Stein, W., and Bronner, F., (eds.), Academic Press, New York, in press.

    Google Scholar 

  • Oster, G. F., and Perelson, A. S., (1985) Cell spreading and motility: A model lamellipod, J. Math. Biol. 21: 383–388.

    Article  Google Scholar 

  • Oster, G. F., and Perelson, A. S., (1987) The physics of cell motility, J. Cell Sci. 8 (suppl.): 35–54.

    CAS  Google Scholar 

  • Oster, G. F., Perelson, A. S., and Tilney, L. G., (1982) A mechanical model for elongation of the acrosomal process in Thyone sperm, J. Math. Biol. 15: 259–265.

    Article  Google Scholar 

  • Perelson, A. S., and Coutsias, E. A., (1986) A moving boundary model for acrosomal elongation, J. Math. Biol. 23: 361–378.

    Article  Google Scholar 

  • Pollard, T. D., (1986) Rate constants for the reactions of ATP-and ADP-actin with the ends of actin filaments, J. Cell Biol. 103: 2747–2754.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T. D., and Cooper, J. A., (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions, Ann. Rev. Biochem. 55: 987–1035.

    Article  PubMed  CAS  Google Scholar 

  • Pryzwansky, K. B., Schilwa, M., and Porter, K. R., (1983) Comparison of the three-dimensional organization of unextracted and Triton-extracted human neutrcphilic polymorphonuclear leukocytes, European J. Cell Biol. 30: 112–125.

    CAS  Google Scholar 

  • Rees, M. K., and Young, M., (1967) Studies on isolation and molecular properties of homogeneous globular actin, J. Biol. Chem. 242: 4449–4458.

    PubMed  CAS  Google Scholar 

  • Scheidegger, A. E., (1974) The Physics of Flow through Porous Media. 3rd ed. University of Toronto Press, Toronto-Buffalo.

    Google Scholar 

  • Schmid-Schönbein, G. W., Skalak, R., Sung, K.-L. P., and Chien, S., (1982) Human leukocytes in active state, In: White Blood Cells: Morphology and Rheology as Related to Function. Bagge, U., Born, G. V. R., and Gaehtgens, P. (eds.), Martinus Nijhoff Publishers, The Hague-Boston-London, pp. 21–31.

    Google Scholar 

  • Schroeder, T. E., (1987) The origin and action of the contractile ring, In: Bionechanics of Cell Division. Akkas, N., (ed.), Plenum Press, New York-London, pp. 209–230.

    Google Scholar 

  • Simon, S. I., and Schmid-Schönbein, G. W., (1989) Cytoplasmic strains and strain rates in motile PMN’s, Biophys. J. in press.

    Google Scholar 

  • Skalak, R., and Zhu, C., (1989) Pheological aspects of red blood cell aggregation, Biorheology. in press.

    Google Scholar 

  • Stossel, T. P., (1982) The structure of the cortical cytoplasm, Phil. Trans. R. Soc. Lond. B 299: 275–289.

    Article  CAS  Google Scholar 

  • Stossel, T. P., (1988) Leukocytes: Mechanical response, In: Inflammation: Basic Principles and Clinical Correlates. Gallin, J. I., Goldstein, I. M., and Enyderman, P., (eds.), Raven Press, New York, pp. 325–342.

    Google Scholar 

  • Stossel, T. P., Chaponnier, C., Ezzell, R. M., Hartwig, J. H., Janmey, P. A., Kwiakowski, D. J., Lind, S. E., Smith, D. B., Southwick, F. S., Yin, H. L., and Zaner, K. S., (1985) Nonmuscle actin-binding proteins, Ann. Rev. Cell Biol. 1: 353–402.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, T., (1981) Gels, Scientific American. 244: 124–138.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D. L., and Condeelis, J. S., (1979) Cytoplasmic structure and contractility in amoeboid cells, Int. Rev. Cytology. 56: 57–144.

    Article  CAS  Google Scholar 

  • Taylor, D. L., and Fechheimer, M., (1982) Cytoplasmic structure and contractility: The solation-contraction coupling hypothesis, Phil. Trans. R. Soc. Lond. B 299: 185–197.

    Article  CAS  Google Scholar 

  • Taylor, E. W., (1965) Brownian and saltatory movements of cytoplasmic granules and the movement of anaphase chromosomes, In: Symposium on Biorheology. Copley, A.L. (ed.), Interscience Publishers, New York, pp. 175–191.

    Google Scholar 

  • Tilney, L. G., (1975) The role of actin in nonmuscle cell motility, In: Muscle and Cell Movement. Inoué, S., and Stephens, R. E., (eds.), Raven Press, New York, pp. 339–386.

    Google Scholar 

  • Tilney, L. G., and Inoué, S., (1982) Acrosomal reaction of Thyone sperm, II. The kinetics and possible mechanism of acrosomal process elongation, J. Cell Blol. 93: 820–827.

    Article  CAS  Google Scholar 

  • Tözeren, A., (1989) Adhesion induced by motile cross-bridges: steady-state peeling of conjugated cell pairs, J. Theor. Blol. in press.

    Google Scholar 

  • Tözeren, A., Sung, K.-L. P., and Chien, S., (1989) Theoretical and experimental studies on cross-bridge migration during cell disaggregation, Blophys. J. 55: 479–487.

    Article  Google Scholar 

  • Vayo, M., (1986) Theoretical and experimental analysis of shear disaggregation of red cell rouleaux, Doctoral Dissertation. Columbia University, New York.

    Google Scholar 

  • Wang, E., Fischiman, D., Liem, R. K. H., and Sun, T.-T., (eds.) (1985) Intermediate Filaments. Ann. N.Y. Acad. Sci. 455.

    Google Scholar 

  • Weiss, D. G., Langford, G. M., and Allen, R. D., (1987) Implications of microtubules in cytomechanics: Static and motile aspects, In: Cyto-mechanics. The Mechanical Basis of Cell Form and Structure. Bereiter-Hahn, J., and Anderson, O. R., (eds.), Springer-Verlag, Berlin-Heidelberg-NewYork-London-Paris-Tokyo, pp. 100–113.

    Google Scholar 

  • Wohlfarth-Bottermann, K.-E., (1987) Dynamic organization and force production in cytoplasmic strands, In: Cytomechanics. The Mechanical Basis of Cell Form and Structure. Bereiter-Hahn, J., and Anderson, O. R., (eds.), Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo, pp. 154–166.

    Google Scholar 

  • Yamazaki, S., Maeda, T., Miki-Noumura, T., (1982) Flexural rigidity of singlet microtubules estimated from statistical analysis of fluctuating images, In: Biological Functions of Microtubules and Related Structures. Sakai, H., Mohri, H., and Borisy, G. G., (eds.), Academic Press, Tokyo, pp. 41–48.

    Google Scholar 

  • Yin, H. L., Albrecht, J. H., and Fattoum, A., (1981) Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transform-ation, and its intracellular distribution in a variety of cells and tissues, J. Cell Biol. 91: 901–906.

    Article  PubMed  CAS  Google Scholar 

  • Yin, H. L., and Stossel, T. P., (1979). Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein, Nature. 281: 583–586.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, C., (1989) A reaction-driven, diffusion-limited, deformation-coupled theory of cell adhesion, Part I: General formulism, J. Theor. Biol. to be submitted.

    Google Scholar 

  • Zhu, C., and Skalak, R., (1988). A continuum model of protrusion of pseudqpod in leukocytes, Biophys. J. 54: 1115–1137.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, C., Skalak, R., and Schmid-Schönbein, G. W., (1989) One-dimensional steady continuum model of retraction of pseudopod in leukocytes, J. Bionech. Engrg. 111: 69–77.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skalak, R., Zhu, C. (1990). Thermodynamics and Mechanics of Active Cell Motions. In: Akkaş, N. (eds) Biomechanics of Active Movement and Deformation of Cells. NATO ASI Series, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83631-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83631-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83633-6

  • Online ISBN: 978-3-642-83631-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics