Skip to main content

Some Basic Principles of Mechanics as Applied to Cytology

  • Conference paper
Biomechanics of Active Movement and Deformation of Cells

Part of the book series: NATO ASI Series ((ASIH,volume 42))

  • 111 Accesses

Abstract

Mechanics is the science of forces and motions. When employed in its classical connotation, as opposed to statistical or quantum mechanics, it may be defined as that discipline which investigates the macroscopic response of systems to the action of forces and/or couples. The methods used are analytical, numerical and experimental. Systems considered may be discrete, in aggregate or continuous. The number of basic concepts involved in this science is small; the most important ones being force, mass, length, and time. The connections between these major concepts are provided by a few experimentally based postulates and assumptions. Logical deduction from these postulates and assumptions leads to quite detailed predictions of the consequences. Mechanics, the first example of a quantitative mathematical theory describing physical phenomena, began more than two millennia ago. Archimedes (287-212 B.C.) is generally considered to be one of the first mechanicians. As a science which began as the contemplation of nature, mechanics has intrigued almost all of the great scientists of all times. Among the more familiar ones, we can name the following few: Stev in(1548–1620), Gali1eo((1564–1642), Hooke(1635–1703 ), Newton(1642–1727), Eu1er(1707–1783), d’Alembert(1717–1783), Lagrange(1736–1813), Laplace(1749–1827), Einstein(1879–1955). Mechanics has been an essential component of natural philosophy ever since Newton published his “Philosophiae Naturalis Principia Mathematica” (1687). In spite of its being one of the oldest physical sciences, mechanics continues to be a lively and fascinating subject. This is due to the fact that mechanics continually expands its areas of application; a more recent one being biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkas N (1980) On the biomechanics of cytokinesis in animal cells. J Biomech 13: 977–988

    Article  PubMed  CAS  Google Scholar 

  • Akkas N (1981) A viscoelastic model for cytokinesis in animal cells. J Biomech 14: 621–631

    Article  PubMed  CAS  Google Scholar 

  • Akkas N (ed) (1987a) Biomechanics of cell division. NATO ASI Series A: Life Sciences V. 132. Plenum, New York London

    Google Scholar 

  • Akkas N (1987b) A mechanician’s view of the biomechanics of cytokinesis. In: Akkas N (ed) Biomechanics of cell division. NATO ASI Series A: Life Sciences V. 132. Plenum, New York London, p 347

    Google Scholar 

  • Akkas N (1988) Cytomechanics. J Islamic Academy Sci 1: 46–49

    Google Scholar 

  • Akkas N (1989 to be published) Cytomechanics (in Turkish). Vth National Mechanics Congress

    Google Scholar 

  • Akkas N, Engin AE (1981) Ultrastructure of animal cells and its role during cytokinesis from a structural mechanics viewpoint. In: Selvadurai APS (ed) Mechanics of structured media. Studies in Applied Mechanics 5A. Elsevier, Holland, p 187

    Google Scholar 

  • Alt W (1987) Mathematical models in actin-myosin interaction In: Wohlfarth-Bottermann KE (Hrsg) Nature and function of cytoskeletal proteins in motility and transport. Fortschritte der Zoologie 34: 219–230

    CAS  Google Scholar 

  • Arnold JM (1976) Cytokinesis in animal cells: new answers to old questions. In: Poste G, Nicolson GL (eds) The cell surface in animal embryogenesis and development. Else-vier, Holland, p 55

    Google Scholar 

  • Ben-Ze’ev A, Duerr A, Solomon F, Penman S (1979) The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell 17: 859–865

    Article  CAS  Google Scholar 

  • Bereiter-Hahn J (1987) Mechanical principles of architecture of eukaryotic cells. In: Bereiter-Hahn J, Anderson OR, Reif WE (eds) Cytomechanics. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, p 3

    Chapter  Google Scholar 

  • Bereiter-Hahn J, Strohmeier R (1987) Hydrostatic pressure in metazoan cells in culture: its involvement in locomotion and shape generation. In: Bereiter-Hahn J, Anderson OR, Reif WE (eds) Cytomechanics. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, p 261

    Chapter  Google Scholar 

  • Bereiter-Hahn J, Anderson OR, Reif WE (eds) (1987) Cytomechanics: the mechanical basis of cell form and structure. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  • Bluemink JG, de Laat SW (1977) Plasma membrane assembly as related to cell division. In: Poste G, Nicolson GL (eds) The synthesis, assembly and turnover of cell surface components. Elsevier, Holland, p 403

    Google Scholar 

  • Bray D, White JG (1988) Cortical flow in animal cells. Science 239: 883–888

    Article  PubMed  CAS  Google Scholar 

  • Bray D, Heath J, Moss D (1986) The membrane-associated “cortex” of animal cells: its structure and mechanical properties. J Cell Sci Suppl 4: 71–88

    PubMed  CAS  Google Scholar 

  • Brush DO, Almroth BO (1975) Buckling of bars, plates and shells. McGraw-Hill, New York

    Google Scholar 

  • Decraemer WF, Maes MA, Vanhuyse VJ (1980) An elastic stress-strain relation for soft biological tissues based on a structural model. J Biomech 13: 463–468

    Article  PubMed  CAS  Google Scholar 

  • Dembo M, Harlow FH, Alt W (1984) The biophysics of cell surface motility. In: Perelson AS, DeLisi Ch, Wiegel FW (eds) Cell surface dynamics, concepts and models. Marcel Dekker, New York Basel, p 495

    Google Scholar 

  • Evans EA (1973) A new material concept for the red cell membrane. Biophys J 16: 926–940

    Article  Google Scholar 

  • Evans EA, Skalak R (1979) Mechanics and thermodynamics of biomechanics. CRC Critical Reviews in Bioengineering V. 3, n. 3 & 4. p 181

    Google Scholar 

  • Gomperts BD (1977) The plasma membrane: models for structure and function. Academic Press, New York

    Google Scholar 

  • Hiramoto Y (1957) The thickness of the cortex and he refractive index of the protoplasm in sea urchin eggs. Embryologia 3: 361–374

    Article  Google Scholar 

  • Hiramoto Y (1975) Force exerted by the cleavage furrow of sea urchin eggs. Develop Growth Differ 17: 27–38

    Article  Google Scholar 

  • Hiramoto Y (1987a) Evaluation of cytomechanical properties. In: Bereiter-Hahn J, Anderson OR, Reif WE (eds) Cyto-mechanics. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, p 31

    Google Scholar 

  • Hiramoto Y (1987b) Mechanical properties of the protoplasm of echinoderm eggs at various stages of cell cycle. In: Akkas N (ed) Biomechanics of cell division. NATO ASI Series A: Life Sciences V.132. Plenum, New York London, p 13

    Google Scholar 

  • His W (1888) On the principles of animal morphology. Proc R Soc Edinb 15: 287–298

    Google Scholar 

  • Johnson KE (1974) Gastrulation and cell interactions. In: Lash J, Whittaker JR (eds) Concepts of development. Sinauer, Connecticut, p 128

    Google Scholar 

  • Krajcinovic D, Trafimow J, Sumarac D (1987) Simple constitutive model for a cortical bone. J Biomech 20: 779–784

    Article  PubMed  CAS  Google Scholar 

  • Mittenthal JE (1987) The shaping of cell sheets: an application of mechanics in developmental biology. In: Akkas N (ed) Biomechanics of cell division. NATO ASI Series A: Life Sciences V. 132. Plenum, New York London, p 327

    Google Scholar 

  • Odell GM, Oster G, Alberch P, Burnside B (1981) The mechanical basis of morphogenes is. I. Epithelial folding and invagination. Develop Biol 85: 446–462

    Article  PubMed  CAS  Google Scholar 

  • Oster G, Odell G, Alberch P (1980) Mechanics, morphogenesis and evolution. Lect on Math in Life Sci 13: 165–255

    Google Scholar 

  • Rappaport R (1971) Cytokinesis in animal cells. Int Review Cytol 31: 169–213

    Article  CAS  Google Scholar 

  • Rappaport R (1974) Cleavage. In: Lash J, Whittaker JR (eds) Concepts of development. Sinauer, Connecticut, p 76

    Google Scholar 

  • Rappaport R (1987) Location of the physical mechanism in the cell. In: Akkas N (ed) Biomechanics of cell division. NATO ASI Series A: Life Sciences V. 132. Plenum, New York London, p 1

    Google Scholar 

  • Roberts K (1974) Cytoplasmic microtubules and their functions. In: Butler JAV, Noble D (eds) Progress in biophysics and molecular biology, V. 23. Pergamon, Oxford New York Toronto Sydney Braunschweig, p 373

    Google Scholar 

  • Schroeder TE (1972) The contractile ring. II. Determining its brief existence, volumetric changes and vital role in cleaving Arbacia eggs. J Cell Biol 53: 419–434

    Article  PubMed  CAS  Google Scholar 

  • Schroeder TE (1975) Dynamics of the contractile ring. In: Inoue S, Stephens RE (eds) Molecules and cell movement. Raven Press, New York, p 305

    Google Scholar 

  • Schroeder TE, Stricker SA (1983) Morphological changes during maturation of starfish oocytes: surface ultra-structure and cortical actin. Develop Biol 98: 373–384

    Article  PubMed  CAS  Google Scholar 

  • Sheterline P (1983) Mechanisms of cell motility: molecular aspects of contractility. Academic Press, London

    Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science NY 175: 720–731

    Article  CAS  Google Scholar 

  • Skalak R (1987) Measuring mechanical properties of cell surfaces and the related theory. In: Akkas N (ed) Bio-mechanics of cell division. NATO ASI Series A: Life Sciences V. 132. Plenum, New York London, p 145

    Google Scholar 

  • Skalak R, Tozeren A, Zarda R, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13: 245–264

    Article  PubMed  CAS  Google Scholar 

  • Spudich A, Spudich JA (1979) Actin in Triton-treated cortical preparations of unfertilised and fertilised sea urchin eggs. J Cell Biol 82: 212–226

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP (1984) Contribution of actin to the structure of the cytoplasmic matrix. J Cell Biol 99: 15–21

    Article  CAS  Google Scholar 

  • Stossel TP, Janmey PA, Zaner KS (1987) The cortical cytoplasmic actin gel. In: Bereiter-Hahn J, Anderson OR, Reif WE (eds) Cytomechanics. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, p 131

    Chapter  Google Scholar 

  • Sybesma C (1977) An introduction to biophysics, Academic Press, New York San Francisco London

    Google Scholar 

  • Tilney LG (1975) Actin filaments in acrosomal reaction of Limulus sperm. J Cell Biol 65: 289–310

    Article  Google Scholar 

  • Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon, Oxford

    Google Scholar 

  • Vol’kenshtein MV (1970) Molecules and life, Plenum Press, New York

    Google Scholar 

  • Waugh RE, Hochmuth RM (1987) Forces shaping an erythrocyte. In: Bereiter-Hahn J, Anderson OR, Reif WE (eds) Cyto-mechanics. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, p 249

    Google Scholar 

  • Weiss DG, Langford GM, Allen RD (1987) Implications of microtubules in cytomechanics: static and motile aspects. In: Bereiter-Hahn J, Anderson OR, Reif WE (eds) Cytomechanics. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, p 100

    Chapter  Google Scholar 

  • Wessells NK, Hopson JL (1988) Biology, Random House, Inc., New York

    Google Scholar 

  • White JG, Hyman AA (1987) On the implications of laterally mobile cortical tension elements for cytokinesis. In: Akkas N (ed) Biomechanics of cell division. NATO ASI Series A: Life Sciences V.132. Plenum, New York London, p 79

    Google Scholar 

  • Wolosewick JL, Porter KR (1979) Microtrabecular lattice of the cytoplasmic ground substance — artifact or reality. J Cell Biol 82: 114–139

    Article  PubMed  CAS  Google Scholar 

  • Yoneda M, Dan K (1972) Tension at the surface of the dividing sea urchin egg. J exp Biol 57: 575–587

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akkas, N. (1990). Some Basic Principles of Mechanics as Applied to Cytology. In: Akkaş, N. (eds) Biomechanics of Active Movement and Deformation of Cells. NATO ASI Series, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83631-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83631-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83633-6

  • Online ISBN: 978-3-642-83631-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics