Skip to main content

The Mechanics of Morphogenesis in Multicellular Embryos

  • Conference paper
Book cover Biomechanics of Active Movement and Deformation of Cells

Part of the book series: NATO ASI Series ((ASIH,volume 42))

Abstract

Our subject is morphogenesis, the shaping of a multicellular embryo. As an embryo develops, it acquires sequentially the characteristic levels of biological organization: A single cell, a fertilized egg, generates a mass of cells which form tissues, then organs, then organ systems. Processes at all of these levels depend on each other; to understand morphogenesis one must unravel this interdependence. The major subject of current investigations in cell biomechanics is the relation between activities of cells and the molecular processes that mediate these activities. In these investigations most experiments focus on the behavior of single cells, or on the interactions between pairs of cells. However, such studies leave unresolved the many-cell problem: How do many cells, interacting in diverse ways, shape an embryo?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J D (1989) Molecular Biology of the Cell, second edition. Garland, New York

    Google Scholar 

  • Armstrong PB (1989) Cell sorting out: The self-assembly of tissues in vitro. CRC Critical Reviews in Biochemistry and Molecular Biology 24: 119–149

    PubMed  CAS  Google Scholar 

  • Azar Y, Eyal-Giladi H (1979) Marginal zone cells — the primitive streak inducing component of the primary hypoblast in the chick. J Embryol Exp Morph 52: 79–88

    PubMed  CAS  Google Scholar 

  • Azar Y, Eyal-Giladi H (1981) Interaction of epiblast and hypoblast in the formation of the primitive streak and the embryonic axis in chick, as revealed by hypoblast rotation experiments. J Embryol Exp Morph 61: 133–144

    PubMed  CAS  Google Scholar 

  • Azar Y, Eyal-Giladi H (1983) The retention of primary hypoblast cells underneath the developing primitive streak allows for their prolonged inductive influence. J Embryol Exp Morph 77: 143–151

    PubMed  CAS  Google Scholar 

  • Baker P (1965) Fine structure and morphogenetic movements in the gastrula of the treefrog, Hyla regilla. J Cell Biol 24: 95–116

    PubMed  CAS  Google Scholar 

  • Bellairs R (1953) Studies on the development of the foregut in the chick blastoderm I. The presumptive foregut area. J Embryol Exp Morph 1: 115–127

    Google Scholar 

  • Bellairs R (1971) Developmental processes in higher vertebrates. Logos Press, London

    Google Scholar 

  • Bellairs R (1986) The primitive streak. A review. Anat Embryol 174: 1–14

    CAS  Google Scholar 

  • Bellairs R (1987) The primitive streak and the neural crest. Comparable regions of cell migration? In: Maderson P (ed) Developmental and Evolutionary Aspects of the Neural Crest. John Wiley & Sons, New York

    Google Scholar 

  • Bellairs R, Ede DA, Lash JW (eds) (1986) Somites in Developing Embryos. Plenum, New York, London

    Google Scholar 

  • Belousov L V (1988) Contact polarization of embryonic cells of Xenopus laevis during gastrulation. I. Contact polarization as a response to mechanical relaxation. Ontogenez 19: 48–54

    Google Scholar 

  • Berne RM, Levy M N (1972) Cardiovascular Physiology, second edition. C V Mosby Co., St. Louis

    Google Scholar 

  • Black SD, Vincent J-P (1988) The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. II. Experimental dissociation by lateral compression of the egg. Dev Biol 128: 65–71

    PubMed  CAS  Google Scholar 

  • Boucaut J-C, Darribere T (1983) Fibronectin in early amphibian embryos. Migrating mesodermal cells contact fibronectin established prior to gastrulation. Cell Tiss Res 234: 135–145

    CAS  Google Scholar 

  • Bray D, White JG (1988) Cortical flow in animal cells. Science 239: 883–888

    PubMed  CAS  Google Scholar 

  • Brick I, Weinberger C (1984) Electrophoretic properties, cell surface morphology and calcium in amphibian gastrulation. Amer. Zool. 24: 629–647. (discussion of unpublished work by Twersky and Brick.)

    CAS  Google Scholar 

  • Burnside B (1971) Microtubules and microfilaments in newt neurulation. Dev Biol 26: 416–441

    PubMed  CAS  Google Scholar 

  • Burnside B (1973) Microtubules and microfilaments in amphibian neurulation. Am Zool 13: 989–1006

    Google Scholar 

  • Burnside B, Jacobson A G (1968) Analysis of morphogenetic movements in the neural plate of the newt Taricha torosa. Dev Biol 18: 537–552

    PubMed  CAS  Google Scholar 

  • Caplan AI (1986) Bone development and repair. BioEssays 6: 171–175

    Google Scholar 

  • Carlson BM (1975) The effects of rotation and positional change of stump tissues upon morphogenesis of the regenerating axolotl limb. Dev Biol 47: 269–291

    PubMed  CAS  Google Scholar 

  • Cheng LY (1987a) Deformation analysis in cell and developmental biology. Part I: Formal methodology. J Biomech 109: 10–17

    CAS  Google Scholar 

  • Cheng LY (1987b) Deformation analysis in cell and developmental biology. Part II: Mechanical experiments on cells. J Biomech 109: 18–24

    CAS  Google Scholar 

  • Cheng LY, Murray JD, Odell GM, Oster G F (1987) The cortical tractor model: A new model for epithelial morphogenesis. In Teramoto E, Yamaguti M (eds), Lecture Notes in Biomathematics: Mathematical Topics in Population Biology, Morphogenesis and Neurosciences. Springer-Verlag, Berlin, pp. 209–216

    Google Scholar 

  • Cooke J (1972) Properties of the primary organization field in the embryo of Xenopus laevis. III. Retention of polarity in cell groups excised from the region of the early organizer. J Embryol Exp Morph 28: 47–56

    PubMed  CAS  Google Scholar 

  • Cooke J (1983) Evidence for specific feedback signals underlying pattern control during vertebrate embryogenesis. J Embryol Exp Morph 76: 95–114

    PubMed  CAS  Google Scholar 

  • Cooke J, Summerbell D (1980) Cell cycle and experimental pattern duplication in the chick wing during embryonic development. Nature 287: 697–701

    PubMed  CAS  Google Scholar 

  • Crawford K, Stocum D L (1988a) Retinoic acid coordinately proximalizes regenerate pattern and blastema differential affinity in axolotl limbs. Development 102: 687–698

    PubMed  CAS  Google Scholar 

  • Crawford K, Stocum D L (1988b) Retinoic acid proximalizes level-specific properties responsible for intercalary regeneration in axolotl limbs. Development 104: 703–712

    PubMed  CAS  Google Scholar 

  • Davis G S (1984) Migration-directing liquid properties of embryonic amphibian tissues. Amer. Zool. 24: 649–655

    Google Scholar 

  • del Pino EM (1989) Marsupial frogs. Sci Amer 260(5): 110–118

    Google Scholar 

  • Downie J R (1974) Behavioural transformation in chick yolk-sac cells. J Embryol Exp Morph 31: 599–610

    PubMed  CAS  Google Scholar 

  • Downie J R (1976) The mechanism of chick blastoderm expansion. J Embryol Exp Morph 35: 559–575

    PubMed  CAS  Google Scholar 

  • Downie JR, Pegrum S M (1971) Organization of the chick blastoderm edge. J Embryol Exp Morph 26: 623–635

    PubMed  CAS  Google Scholar 

  • Edelman G M (1988) Topobiology: An Introduction to Molecular Embryology. Basic Books, New York

    Google Scholar 

  • Elinson RP, Rowning B (1988) A transient array of parallel microtubules in frog eggs: Potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 128: 185–197

    PubMed  CAS  Google Scholar 

  • Etheridge A L (1968) Determination of the mesonephric kidney. J Exp Zool 169: 357–369

    Google Scholar 

  • Ettensohn C A (1985) Gastrulation in the sea urchin is accompanied by the rearrangement of invaginating epithelial cells. Dev Biol 112: 383–390

    PubMed  CAS  Google Scholar 

  • Eyal-Giladi H (1984) The gradual establishment of cell commitments during the early stages of chick development. Cell Differentiation 14: 245–255

    PubMed  CAS  Google Scholar 

  • Eyal-Giladi H, Kochav S (1976) From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev Biol 49: 321–337

    PubMed  CAS  Google Scholar 

  • Eyal-Giladi H, Wolk M (1970) The inducing capacities of the primary hypoblast as revealed by transfilter induction studies. W Roux’ Arch Entwicklungsmech. Org 165: 226–241

    Google Scholar 

  • Fabian B, Eyal-Giladi H (1981) A SEM study of cell shedding during the formation of the area pellucida in the chick embryo. J Embryol Exp Morph 64: 11–22

    PubMed  CAS  Google Scholar 

  • Feinberg RN, Beebe D C (1983) Hyaluronate in vasculogenesis. Science 220: 1177–1179

    PubMed  CAS  Google Scholar 

  • Fristrom D (1988) The cellular basis of epithelial morphogenesis. A review. Tiss & Cell 20: 645–690

    CAS  Google Scholar 

  • Fristrom D, Fristrom J W (1975) The mechanism of evagination of imaginai discs of Drosophila melanogaster. I. General considerations. Dev Biol 43: 1–23

    CAS  Google Scholar 

  • Garrod DR, Steinberg M S (1973) Tissue-specific sorting-out in two dimensions in relation to contact inhibition of overlapping. Nature 244: 568–569

    PubMed  CAS  Google Scholar 

  • Geduspan JS, MacCabe J A (1989) Transfer of dorsoventral information from mesoderm to ectoderm at the onset of limb development. Anat Rec 224: 79–87

    PubMed  CAS  Google Scholar 

  • Gerhart JC (1980) Mechanisms regulating pattern formation in the amphibian egg and early embryo. In: Goldberger RF, (ed) Biological Regulation and Development. Vol. 2: Molecular Organization and Cell Function. Plenum, New York. pp. 133–316

    Google Scholar 

  • Gerhart J C (1987) Determinants of early amphibian development. Amer Zool 27: 593–605

    Google Scholar 

  • Gerhart JC, Keller R (1986) Region-specific cell activities in amphibian gastrulation. Ann Rev Cell Biol 2: 201–229

    PubMed  CAS  Google Scholar 

  • Gierer A (1977) Physical aspects of tissue evagination and biological form. Quart Rev Biophys 10: 529–593

    CAS  Google Scholar 

  • Gimlich RL, Gerhart J C (1984) Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev Biol 104: 117–130

    PubMed  CAS  Google Scholar 

  • Goodwin BC (1988) The evolution of generic forms. In: Maynard Smith J, Vida G, (eds) Organizational Constraints on the Dynamics of Evolution. Manchester University Press (in press)

    Google Scholar 

  • Goodwin BC, Trainor L E H (1983) The ontogeny and phylogeny of the pentadactyl limb. In: Goodwin BC, Holder N, Wylie C C (eds) Development and Evolution. Cambridge University Press, New York. pp. 5–98

    Google Scholar 

  • Gordon R (1985) A review of the theories of vertebrate neurulation and their relationship to the mechanics of neural tube birth defects. J Embryol Exp Morph 89(Supplement): 229–255

    PubMed  Google Scholar 

  • Goss R J (1969) Principles ofRegeneration, Academic: New York

    Google Scholar 

  • Greenspan H P (1977) On the dynamics of cell cleavage. J Theor Biol 65: 79–99

    PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton H L (1951) A series of normal stages in the development of the chick embryo. J Morphol 88: 49–92.

    Google Scholar 

  • Hardin J, Keller R (1988) The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103: 211–230.

    PubMed  CAS  Google Scholar 

  • Harris A K (1976) Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J Theor Biol 61: 267–285.

    PubMed  CAS  Google Scholar 

  • Harrison L G (1987) What is the status of reaction-diffusion heory thirty-four years after Turing? J Theor Biol 125: 369–384.

    PubMed  CAS  Google Scholar 

  • Harrison R G (1921) On relations of symmetry in transplanted limbs. J Exp Zool 32: 1–136.

    Google Scholar 

  • Heintzelman KF, Phillips HM, Davis G S (1978) Liquid-tissue behavior and differential cohesiveness during chick limb budding. J Embryol Exp Morph 47: 1–15.

    PubMed  CAS  Google Scholar 

  • Hinchliffe J R (1977) The chondrogenic pattern in chick limb morphogenesis: a problem of development and evolution. In: Ede DA, Hinchliffe JR, Balls M (eds) Vertebrate Limb and Somite Morphogenesis. Cambridge University Press, New York

    Google Scholar 

  • Hinchliffe JR, Johnson D R (1980) The Development of the Vertebrate Limb. Clarendon, Oxford

    Google Scholar 

  • His W (1874) Unsere Körperform und das physiologische Problem ihrer Enstehung, Briefe an einen befreundeten Naturforscher. Vogel, Leipzig

    Google Scholar 

  • Holtfreter J (1944) A study of the mechanics of gastrulation. J Exp Zool 95: 171–212

    Google Scholar 

  • Holtfreter J (1968) Mesenchyme and epithelia in inductive and morphogenetic processes. In: Fleischmajer R, Billingham R E (eds) Epithelial-Mesenchymal Interactions. Williams & Wilkins, Baltimore

    Google Scholar 

  • Honda H (1983) Geometrical models for cells in tissues. Int Rev Cytol 81: 191–248

    PubMed  CAS  Google Scholar 

  • Jacobson A G (1978) Some forces that shape the nervous system. Zoon 6: 13–21

    Google Scholar 

  • Jacobson A G (1981) Morphogenesis of the neural plate and tube. In: Connelly TG, Brinkley LL, Carlson B M (eds) Morphogenesis and Pattern Formation. Raven Press, New York. pp. 233–263

    Google Scholar 

  • Jacobson A G (1984) Further evidence that formation of the neural tube requires elongation of the nervous system. J Exp Zool 230: 23–28

    PubMed  CAS  Google Scholar 

  • Jacobson A G (1985) Adhesion and movement of cells may be coupled to produce neurulation. In: Edelman GM, Thiery J P (eds) The Cell in Contact: Adhesions and Junctions as Morphogenetic Determinants, John Wiley & Sons, New York, pp 49–65

    Google Scholar 

  • Jacobson A G (1988) Somitomeres: mesodermal segments of vertebrate embryos. Development 104 (Supplement): 209–220

    PubMed  Google Scholar 

  • Jacobson AG, Gordon R (1976) Changes in the shape of the developing vertebrate nervous system analysed experimentally, mathematically, and by computer simulation. J Exp Zool. 197: 191–246

    PubMed  CAS  Google Scholar 

  • Jacobson AG, Odell GM, Oster G F (1985) The cortical tractor model for epithelial folding: Application to the neural plate. In: Edelman G M (ed) Molecular Determinants of Animal Form, UCLA Symposia on Molecular and Cellular Biology (new series), Vol 31. Alan R Liss, New York, pp 143–167

    Google Scholar 

  • Jacobson AG, Oster GF, Odell, G M, Cheng L Y (1986) Neurulation and the cortical tractor model for epithelial folding. J Embryol Exp Morph 96: 19–49

    PubMed  CAS  Google Scholar 

  • Jacobson A G, Sater, A K (1988) Features of embryonic induction. Development 104: 341–359

    PubMed  CAS  Google Scholar 

  • Jacobson A G, Tarn PPL (1982) Cephalic neurulation in the mouse embryo analysed by SEM and morphometry. Anat Rec 203: 375–396

    PubMed  CAS  Google Scholar 

  • Jacobson C O (1962) Cell migration in the neural plate and the process of neurulation in the Axolotl larva. Zool Bidr Uppsala 35: 433–449

    Google Scholar 

  • Jaffe LF, Stern C D (1982) Strong electrical currents leave the primitive streak of chick embryos. Science 206: 569–571

    Google Scholar 

  • Jarzem J, Meier S P (1987) A scanning electron microscope survey of the origin of the primordial pronephric duct cells in the avian embryo. Anat Rec 218: 175–181

    PubMed  CAS  Google Scholar 

  • Javois L C (1984) Pattern specification in the developing chick limb. In: Pattern Formation, Malacinski GM, Bryant S V (eds), Macmillan, New York. pp. 557–579

    Google Scholar 

  • Kaneda T, Hama T (1979) Studies on the formation and state of determination of the trunk organizer in the newt, Cynops pyrrhogaster. W Roux’s Arch Dev Biol 187: 25–34

    Google Scholar 

  • Keller R E (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev Biol 42: 222–241

    PubMed  CAS  Google Scholar 

  • Keller R E (1978) Time-lapse cinematographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis. J Morphol 157: 223–248

    Google Scholar 

  • Keller R E (1980) The cellular basis of epiboly: An SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis, J Embryol Exp Morph 60: 201–234

    PubMed  CAS  Google Scholar 

  • Keller RE(1981) An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J Exp Zool 216: 81–101

    Google Scholar 

  • Keller R E (1984) The cellular basis of gastrulation in Xenopus laevis: Active, postinvolution convergence and extension by mediolateral interdigitation. Amer Zool 24: 589–603

    Google Scholar 

  • Keller R E (1986) The cellular basis of amphibian gastrulation. In: Browder L (ed) Developmental Biology: A Comprehensive Synthesis. Plenum, New York. pp. 241–327

    Google Scholar 

  • Keller R E (1987) Cell rearrangement in morphogenesis. Zool Sci 4: 763–779

    Google Scholar 

  • Keller RE, Danilchik M (1988) Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103: 193–209

    PubMed  CAS  Google Scholar 

  • Keller RE, Danilchik M, Gimlich R, Shih J (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J Embryol Exp Morph (Supplement) 89: 185–209

    Google Scholar 

  • Keller RE, Hardin J (1987) Cell behavior during active cell rearrangement: Evidence and speculation. J Cell Sci (Supplement) 8: 369–393

    CAS  Google Scholar 

  • Keller RE, Trinkaus JP(1987) Rearrangement of the enveloping layer cells without disruption of the epithelial permeability barrier as a factor in Fundulus epiboly. Dev Biol 120: 12–24

    PubMed  CAS  Google Scholar 

  • Khaner O, Eyal-Giladi H (1986) The embryo forming potency of the posterior marginal zone in stages X through XII of the chick. Dev Biol 115: 275–281

    PubMed  CAS  Google Scholar 

  • Kitchin J C (1949) The effects of notochordectomy in Ambystoma mexicanum. J Exp Zool 122: 393–415

    Google Scholar 

  • Kochav S, Eyal-Giladi H (1971) Bilateral symmetry in chick embryo, determination by gravity. Science 171: 1027–1029

    PubMed  CAS  Google Scholar 

  • Kochav S, Ginsburg M, Eyal-Giladi H (1980) From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick. II. Microscopic anatomy and cell population dynamics. Dev Biol 79: 296–308

    PubMed  CAS  Google Scholar 

  • Kolega J (1986) The cellular basis of epithelial morphogenesis. In: Browder L (ed) Developmental Biology: A Comprehensive Synthesis. Plenum, New York. pp. 103–143

    Google Scholar 

  • Kubota HY, Durston A J (1978) Cinematographical study of cell migration in the opened gastrula of Ambystoma mexicanum. J Embryol Exp Morph 44: 71–80

    PubMed  CAS  Google Scholar 

  • MacCabe A B, Gasseling M T, Saunders J W Jr. (1973) Spatiotemporal distribution of mechanisms that control outgrowth and antero-posterior polarization of the limb bud in the chick embryo. Mechanisms of Ageing and Development 2: 1–12

    PubMed  CAS  Google Scholar 

  • MacCabe J A, Saunders J W Jr., Pickett M (1973) The control of the anteroposterior and dorsoventral axes in embryonic chick limbs constructed of dissociated and reaggregated limb-bud mesoderm. Dev Biol 31: 323–335

    PubMed  CAS  Google Scholar 

  • McClay D R, Ettensohn C A (1987) Cell adhesion in morphogenesis. Ann Rev Cell Biol 3: 319–345

    PubMed  CAS  Google Scholar 

  • Malicinski G M, Youn B W (1981) Neural plate morphogenesis and axial stretching in “notochord-defective” Xenopus laevis embryos. Dev Biol 88: 352–357

    Google Scholar 

  • Meier S P (1979) Development of the chick mesoblast. Formation of the embryonic axis and establishment of the metameric pattern. Dev Biol 73: 25–45

    Google Scholar 

  • Meier S, Drake C (1984) SEM localization of laminin in the basement membrane of the chick corneal epithelium with immunolatex microspheres. Dev Biol 106: 83–88

    PubMed  CAS  Google Scholar 

  • Mitrani E (1982) Primitive streak-forming cells of the chick invaginate through a basement membrane. W Roux’s Arch 191: 320–324

    Google Scholar 

  • Mittenthal J E (1981) The rule of normal neighbors: A hypothesis for morphogenetic pattern regulation. Dev Biol 88: 15–26

    PubMed  CAS  Google Scholar 

  • Mittenthal J E (1985) Morphogenetic fields and the control of form in the limbs of decapods. In: Wenner A M (ed) Crustacean Growth: Factors in Adult Growth. Balkema, Rotterdam, pp. 47–71

    Google Scholar 

  • Mittenthal J E (1986) A model for the role of interfacial tensions within cell sheets in the early morphogenetic events of amphibian development. In: Slavkin H (ed) Progress in Developmental Biology. Part A. Liss, New York

    Google Scholar 

  • Mittenthal J E (1987) The shaping of cell sheets: An application of mechanics in developmental biology. In: Akkas N (ed) Biomechanics of Cell Division. Plenum, New York. pp. 327–346

    Google Scholar 

  • Mittenthal J E (1989) Physical aspects of the organization of development. In: Stein D (ed) Complex Systems, SFI Studies in the Sciences of Complexity. Addison-Wesley Longman, Reading, Masachusetts

    Google Scholar 

  • Mittenthal JE, Mazo RM (1983) A model for shape generation by strain and cell-cell adhesion in the epithelium of an arthropod leg segment. J Theor Biol 100: 443–483

    PubMed  CAS  Google Scholar 

  • Mittenthal J E, Nuelle J R (1988) Discontinuities of pattern and rules for regeneration in limbs of crayfish. Dev Biol 126: 315–326

    PubMed  CAS  Google Scholar 

  • Modak S P (1966) Analyse expérimentale de l’origine de l’entoblaste embryonnaire chez les oiseaux. Rev Suisse Zool 73: 877–908

    PubMed  CAS  Google Scholar 

  • Mookerjee S, Deuchar E M, Waddington C H (1953) The morphogenesis of the notochord in amphibia. J Embryol Exp Morph 1: 399–409

    Google Scholar 

  • Moury J D, Jacobson A G (1989) Neural fold formation at newly created boundaries between neural plate and epidermis in the axolotl. Dev Biol 133: 44–57

    PubMed  CAS  Google Scholar 

  • Muneoka K, Bryant SV (1982) Evidence that patterning mechanisms developing and regenerating limbs are the same. Nature (Lond) 298: 369–371

    CAS  Google Scholar 

  • Nakatsuji N (1986) Presumptive mesoderm cells from Xenopus laevis gastrulae attach to and migrate on substrata coated with fibronectin or laminin. J Cell Sci 86: 109–118

    PubMed  CAS  Google Scholar 

  • Nakatsuji N, Johnson K E (1983) Conditioning of a culture substratum by the ectodermal layer promotes attachment and oriented locomotion by amphibian gastrula mesodermal cells. J Cell Sci 59: 43–60

    PubMed  CAS  Google Scholar 

  • Nardi J B (1981) Induction of invagination in insect epithelium: Paradigm for embryonic invagination. Science 214: 564–566

    PubMed  CAS  Google Scholar 

  • Nardi J B, Stocum D L (1983) Surface properties of regenerating limb cells: evidence for gradation along the proximodistal axis. Differentiation 25: 27–31

    Google Scholar 

  • New D A T (1959) The adhesive properties and expansion of the chick blastoderm. J Embryol Exp Morph 7: 146–164

    PubMed  CAS  Google Scholar 

  • Newman S A (1988) Lineage and pattern in the developing vertebrate limb. Trends in Genetics 4: 329–332

    PubMed  CAS  Google Scholar 

  • Newman S A, Frisch H L (1979) Dynamics of skeletal pattern formation in developing chick limb. Science 205: 662–668

    PubMed  CAS  Google Scholar 

  • Newman S A, Frisch H L, Percus J K (1988) On the stationary state analysis of reaction-diffusion mechanisms for biological pattern formation. J Theor Biol 134: 183–197

    PubMed  CAS  Google Scholar 

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30: 675–686

    PubMed  CAS  Google Scholar 

  • Nieuwkoop P D (1969) The formation of the mesoderm in urodelean amphibians. I. The induction by the endoderm. Roux Arch Entwmech Org 162: 341–373

    Google Scholar 

  • Nubler-Jung K (1977) Pattern stability in the insect segment. I. Pattern reconstitution by intercalary regeneration and cell sorting in Dysdercus intermedius Dist. W Roux Arch Dev Biol 183: 17–40

    Google Scholar 

  • Odell G M, Oster G, Alberch P, Burnside B (1981) The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev Biol 85: 446–462

    PubMed  CAS  Google Scholar 

  • Olszanska B, Szolajska E, Lassota Z (1984) Effect of spatial pattern of uterine quail blastoderms cultured in vitro on bilateral symmetry formation. Wilhelm Roux Arch 193: 108–110

    Google Scholar 

  • Oono Y, Shinozaki A (1989) Cell dynamical systems. Forma (in press)

    Google Scholar 

  • Oster G F (1984) On the crawling of cells. J Embryol Exp Morph 83(Supplement): 329–364

    PubMed  Google Scholar 

  • Oster GF, Murray JD, Harris A K (1983) Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Morph 78: 83–125

    PubMed  CAS  Google Scholar 

  • Oster GF, Murray JD, Maini P K (1985) A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions. J Embryol Exp Morph 89: 93–112

    PubMed  CAS  Google Scholar 

  • Oster GF, Shubin N, Murray JD, Alberch P (1988) Evolution and morphogenetic rules: The shape of the vertebrate limb in ontogeny and phylogeny. Evolution 42: 862–884

    Google Scholar 

  • Patterson J T (1910) Studies on the early development of the hen’s egg. I. History of the early cleavage and the accessory cleavage. J Morph 21: 101–134

    Google Scholar 

  • Perry M, Waddington C H (1966) Ultrastructure of the blastoporal cells in the newt. J Embryol Exp Morph 15: 317–330

    PubMed  CAS  Google Scholar 

  • Phillips HM, Davis G S (1978) Liquid-tissue mechanics in amphibian gastrulation: Germ-layer assembly in Rana pipiens. Amer Zool 18: 81–93.

    Google Scholar 

  • Poole TJ, Steinberg M S (1981) Amphibian pronephric duct morphogenesis: Segregation, cell rearrangement, and directed migration of the Ambystoma duct rudiment. J Embryol Exp Morph 63: 1–16

    PubMed  CAS  Google Scholar 

  • Richman DP, Stewart RM, Hutchinson JW, Caviness V S, Jr. (1975) Mechanical model of brain convolutional development. Science 189: 18–21

    Google Scholar 

  • Robertson A, Gingle A R (1977) Axial bending in the early chick embryo by a cyclic adenosine monophosphate source. Science 197: 1078–1079

    PubMed  CAS  Google Scholar 

  • Robertson A, Grutsch JF, Gingle A R (1978) cAMP production by embryonic chick cells. Science 199: 990–991

    PubMed  CAS  Google Scholar 

  • Robinson K R, Stump R F (1984) Self-generated electrical currents through Xenopus neurulae. J Physiol (Lond.) 352: 339–352

    CAS  Google Scholar 

  • Rooney P, Archer C, Wolpert L (1984) Morphogenesis of cartilaginous long bone rudiments. Symp Soc Develop Biol 42: 305–322

    Google Scholar 

  • Rosenquist G C (1966) A radioautographic study of labelled grafts in the chick blastoderm: development from primitive streak to stage 12. Contr Embryol Carnegie Inst 38: 71–110

    Google Scholar 

  • Rosenquist G C (1971) The location of the pregut endoderm in the chick embryo at the primitive streak stage as determined by radioautographic mapping. Dev Biol 26: 323–335

    PubMed  CAS  Google Scholar 

  • Rosenquist G C (1972) Endoderm movements in the chick embryo between the early short streak and head process stage. J Exp Zool 180: 95–104

    PubMed  CAS  Google Scholar 

  • Sanders E J (1984) Labelling of basement membrane constituents in the living chick embryo during gastrulation. J Embryol Exp Morph 79: 113–123

    PubMed  CAS  Google Scholar 

  • Sanders EJ, Bellairs R, Portch P A (1978) In vivo and in vitro studies on the hypoblast and definitive endoblast of avian embryos. J Embryol Exp Morph 46: 187–205

    PubMed  CAS  Google Scholar 

  • Saunders J W Jr. (1948) The proximo-distal sequence of the origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 108: 363–404

    PubMed  Google Scholar 

  • Schaeffer BE, Schaeffer HE, Brick I (1973) Cell electrophoresis of amphibian bias tula and gastrula cells: The relationship of surface charge and morphogenetic movement. Dev Biol 34: 66–76

    PubMed  CAS  Google Scholar 

  • Scharf SR, Gerhart J C (1983) Axis determination in eggs of Xenopus laevis: A critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation. Dev Biol 99: 75–87

    PubMed  CAS  Google Scholar 

  • Scharf SR, Rowning B, Wu M, Gerhart J C (1989) Hyperdorsoanterior embryos from Xenopus eggs treated with D2O. Dev Biol 134: 175–188

    PubMed  CAS  Google Scholar 

  • Schechtman A M (1942) The mechanism of amphibian gastrulation. I. Gastrulation-promoting interactions between various regions of an anuran egg (Hyla regilla). Univ Calif Publ Zool 51: 1–39

    Google Scholar 

  • Schoenwolf G C (1985) Shaping and bending of the avian neuroepithelium: Morphometric analysis. Dev Biol 109: 127–139

    PubMed  CAS  Google Scholar 

  • Schoenwolf GC, Alvarez I S (1989) Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate. Development 106: 427–439

    PubMed  CAS  Google Scholar 

  • Schroeder TE (1970) Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J Embryol Exp Morph 23: 427–462

    PubMed  CAS  Google Scholar 

  • Slack C, Warner A E (1983) Intracellular and intercellular potentials in the early amphibian embryo. J Physiol (London) 232: 313–330

    Google Scholar 

  • Slack J M W (1984) The early amphibian embryo — a hierarchy of developmental decisions. In: Malacinski GM, SV Bryant SV (eds) Pattern Formation. Macmillan, New York, pp 457–480

    Google Scholar 

  • Slack J (ed) (1985) Early Amphibian Development. J Embryol Exp Morph 89 (Supplement)

    Google Scholar 

  • Smith D W (1981) Mechanics in morphogenesis: Principles and response of particular tissues. In: Recognizable Patterns of Human Deformation. Saunders, Philadelphia, pp 110–144

    Google Scholar 

  • Solursh M (1984) Ectoderm as a determinant of early tissue pattern in the limb bud. Cell Differentiation 15: 17–24

    PubMed  CAS  Google Scholar 

  • Spemann H (1938) Embryonic Development and Induction. Hafner, New York.

    Google Scholar 

  • Spratt NT, Haas H (1960) Integrative mechanisms in development of the early chick blastoderm. I. Regulated potentiality of separate parts. J Exp Zool 145: 97–138

    Google Scholar 

  • Spratt NT, Haas H (1965) Germ layer formation and the role of the primitive streeak in the chick. J Exp Zool 158: 9–38

    PubMed  Google Scholar 

  • Steinberg M S (1963) Reconstruction of tissues by dissociated cells. Science 141: 401–408

    PubMed  CAS  Google Scholar 

  • Steinberg M S (1970) Does differential adhesion govern self-assembly processes in histogenesis? Equilbrium configurations and the emergence of a hierarchy among populations of embryonic cells. J Exp Zool 173: 395–434

    PubMed  CAS  Google Scholar 

  • Steinberg MS, Poole T J (1982) Cellular adhesive differentials as determinants of morphogenetic movements and organ segregation. Symp Soc Develop Biol 40: 351–378

    Google Scholar 

  • Stern C D (1982) Experimental reversal of polarity in chick embryo epiblast sheets in vitro. Exp Cell Res 221: 395–404

    Google Scholar 

  • Stern C (1984) A simple model for early morphogenesis. J Theor Biol 107: 229–242

    PubMed  CAS  Google Scholar 

  • Stern CD, Goodwin B C (1977) Waves and periodic events during primitive streak formation in the chick. J Embryol Exp Morph 41: 15–22

    PubMed  CAS  Google Scholar 

  • Stern CD, MacKenzie D O (1983) Sodium transport and the control of epiblast polarity in the early chick embryo. J Embryol Exp Morph 77: 73–98

    PubMed  CAS  Google Scholar 

  • Stocum D L (1984) The urodele limb regeneration blastema. Determination and organization of the morphogenetic field. Differentiation 27: 13–28

    PubMed  CAS  Google Scholar 

  • Stocum DL, Fallon J F (1984) Mechanisms of polarization and pattern formation in urodele limb ontogeny: A polarizing zone model. In: Malacinski GM, Bryant S V (eds) Pattern Formation. Macmillan, New York, pp 507–520

    Google Scholar 

  • Stock GB, Krasner GN, Holder N, Bryant S V (1980) Frequency of supernumerary limbs following blastemal rotations in the newt. J Exp Zool 214: 123–126

    Google Scholar 

  • Trinkaus J P (1984a) Mechanism of Fundulus epiboly — a current view. Amer Zool 24: 673–688

    Google Scholar 

  • Trinkaus J P (1984b) Cells into Organs. The Forces that Shape the Embryo. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Triplett RL, Meier S (1982) Morphological analysis of the development of the primary organizer in avian embryos. J Exp Zool 220: 191–206

    Google Scholar 

  • Vakaet L (1962) Some new data concerning the formation of the definitive endoblast in the chick embryo. J Embryol Exp Morph 10: 38–57

    PubMed  CAS  Google Scholar 

  • Vakaet L (1984a) Early development of birds. In: Le Douarin NM, McLaren A (eds) Chimeras in Developmental Biology, Academic Press, London, pp. 71–88

    Google Scholar 

  • Vakaet L (1984b) The initiation of gastrular ingression in the chick blastoderm. Amer Zool 24: 555–562

    Google Scholar 

  • Vintemberger P, Clavert J (1960) Sur le déterminisme de la symétrie bilatérale chez les oiseaux. XIII. Les facteurs de l’orientation de l’embryon par rapport à l’axe de l’oeuf et la régie de Von Baer, à la lumiére de nos expériences d’orientation dirigée sur l’oeuf de poule extrait de l’utérus. C R Soc Biol 154: 1072–1076

    CAS  Google Scholar 

  • Von Baer K E (1828) Entwicklungsgeschichte des Hühnchens im Ei. Bonntragen, Königsberg, p. 315

    Google Scholar 

  • Waddington C H (1932) Experiments on the development of chick and duck embryos, cultivated in vitro. Phil Trans R Soc London B 211: 179–230

    Google Scholar 

  • Waddington C H (1933) Induction by the endoderm in birds. W Roux’Arch Entwicklungsmech Org 128: 502–521

    Google Scholar 

  • Wilby OK, Ede D A (1976) Computer simulation of vertebrate limb development. In: Lindenmayer A, Rozenberg G (eds) Automata, Languages, Development. North-Holland, Amsterdam, pp. 143–161

    Google Scholar 

  • Wilson PA, Oster G, Keller R (1989) Cell rearrangement and segmentation in Xenopus: Direct observation of cultured expiants. Development 105: 155–166

    PubMed  CAS  Google Scholar 

  • Winfree A T (1984) A continuity principle for regeneration. In: Malacinski GM, Bryant S V (eds) Pattern Formation. Macmillan, New York, pp 103–124

    Google Scholar 

  • Wolpert L (1971) Positional information and pattern formation. Curr Top Devel Biol 6: 183–224

    CAS  Google Scholar 

  • Wolpert L, Stein W D (1984) Positional information and pattern formation. In: Malacinski GM, Bryant S V (eds) Pattern Formation. Macmillan, New York. pp 3–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mittenthal, J.E., Jacobson, A.G. (1990). The Mechanics of Morphogenesis in Multicellular Embryos. In: Akkaş, N. (eds) Biomechanics of Active Movement and Deformation of Cells. NATO ASI Series, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83631-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83631-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83633-6

  • Online ISBN: 978-3-642-83631-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics