Skip to main content

Laser Physical Methods: Laser Microprobe Mass Spectrometry

  • Chapter
Physical Methods in Plant Sciences

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 11))

Abstract

Soon after the advent of the laser, several mass spectroscopists realized the potentials of a laser mass spectrometer combination. Laser-induced mass spectrometry was attempted as early as 1966, but without very promising results. Since the Laser Microprobe Mass Analyzer (LAMMAR) became commercially available in 1978, its application has been increasing rapidly in different fields, due to various particular advantages. It soon became obvious that this method allows the identification of complex molecules through finger-prints of the fragment ions. Especially in organic mass spectrometry and in particle analysis, laser desorption mass spectrometry (LDMS) is becoming a unique technique for analyzing nonvolatile and/or thermally labile organic compounds on a micron-size level. The application of lasers in mass spectrometry (MS) implied a breakthrough in the further development of microanalysis. Laser radiation can be concentrated to a very high power density during extremely short periods of time. The use of the laser offered, therefore, the means to vaporize, excite or ionize a very small volume of solid material, which opened new perspectives for localization in the microscopical level. The aim of this article is to give a description of the commercial instruments for laser mass spectrometry (LMS), to explain how analysis is carried out, to point out the advantages and disadvantages of this technique and to show, on the basis of different applications, in which fields the instrument can be applied. A review of the areas of application will be presented with special emphasis on applications in the life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams F, Bloch P, Natusch DFS, Surkyn P (1981) Microscopical analysis for source identification in air chemistry and air pollution. In: Anagnostopoulos A (ed) Proc Int Conf Environ Poll, Thessaloniki, Greece, pp 20–24

    Google Scholar 

  • Bauch J (1983) Biological alterations in the stem and root of fir and spruce due to pollution influence. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Reidel Publ Co, pp 377–386

    Google Scholar 

  • Bauch J, Schröder W (1982) Zellulärer Nachweis einiger Elemente in den Feinwurzeln gesunder und erkrankter Tannen (Abies alba Mill.) und Fichten (Picea abies [L.] Karst.) Forstwiss Centralbl 101: 285–294

    Google Scholar 

  • Benninghoven A (1983) Secondary ion mass spectrometry of organic compounds. In: Benninghoven A (ed) Proc Sec Int Conf Münster. Springer Ser Chem Phys 25: 64–89

    Google Scholar 

  • Bochem HP, Sprey B (1979) Laser microprobe analysis of inclusions in Dunaliella saliva. Z Pfanzenphysiol 95: 179–182

    CAS  Google Scholar 

  • Bruynseels FJ, Van Grieken RE (1983) Molecular ion distributions in laser microprobe mass spectrometry of calcium oxide and calcium salts. Spectrochim Acta 38B: 853–858

    Google Scholar 

  • Bruynseels FJ, Van Grieken RE (1984) Laser microprobe mass spectrometric identification of sulfur species in single micrometer-size particles. Anal Chem 56: 871–873

    CAS  Google Scholar 

  • Bruynseels FJ, Van Grieken RE (1985) Direct detection of sulfate and nitrate layers on sampled marine aerosols by laser microprobe mass analysis. Atmos Environ 19: 1969–1970

    CAS  Google Scholar 

  • Bruynseels F, Storms H, Tavares T, Van Grieken R (1985a) Characterization of individual particle types in coastal air by laser microprobe mass analysis. Int J Environ Anal Chem 23: 1–14

    CAS  Google Scholar 

  • Bruynseels F, Storms H, Van Grieken R (1985b) Chemical characterization of airborne particulate matter above the North Sea. In: Lekkas TD (ed) Int Conf Heavy Metals Environ 1: 189–191

    Google Scholar 

  • Conzemius RJ, Svec HJ (1978) Scanning laser mass spectrometer milliprobe. Anal Chem 50: 1854–1860

    CAS  Google Scholar 

  • Conzemius RJ, Simons DS, Shankai Z, Byrd GD (1983) Laser mass spectrometry of solids: A bibliography 1963–1982. In: Gooley R (ed) Microbeam analysis — 1983. San Francisco Press, San Francisco, pp 301–328

    Google Scholar 

  • Dennemont J, Landry JC (1985) Mass spectrometric identification of inorganic substances by laser microprobe mass analysis. In: Armstrong JT (ed) Microbeam analysis — 1985. San Francisco Press, San Francisco, pp 305–309

    Google Scholar 

  • De Nollin S, Jacob W, Hentsens R (1984) Laser microprobe mass analysis ( LAM MA) as a technique to quantitate Cat ions. Dev Cardiovascular Med 40: 52–58

    Google Scholar 

  • Denoyer E, Mauney T, Natusch DFS, Adams F (1982) Laser microprobe mass analysis of coal and oil fly ash particles. In: Heinrich KFJ (ed) Microbeam analysis — 1982. San Francisco Press, San Francisco, pp 191–196

    Google Scholar 

  • Denoyer E, Natusch DFS. Surkyn P, Adams FC (1983) Laser microprobe mass analysis (LAM MA) as a tool for particle characterization: a study of coal fly ash. Environ Sci Technol 17:457–462

    CAS  Google Scholar 

  • De Waele JK, Adams FC (1985) Applications of laser microprobe mass analysis for characterization of asbestos. Scanning Electron Microsc 111: 935–946

    Google Scholar 

  • De Waele JK, Vansant EF, Van Espen P. Adams FC (1983) Laser microprobe mass analysis of asbestos fiber surfaces for organic compounds. Anal Chem 55: 671–677

    Google Scholar 

  • Dingle T, Griffiths B (1981) A laser ion mass analyser (LIMA) for bulk samples with high spatial resolution and PPM hydrogen sensitivity. J Phys E: Sci Instrum 14: 513

    Google Scholar 

  • Dingle T, Griffiths B W, Ruckmann JC, Evans CA Jr (1982) The performance of a laser-induced ion mass analyzer system for bulk samples. In: Heinrich KFJ (ed) Microbeam analysis — 1982. San Francisco Press, San Francisco, pp 365–368

    Google Scholar 

  • Edelmann L (1981) Selective accumulation of Li’, Na’, K, Rb’ and Cs’ at protein sites of freeze-dried embedded muscle detected by LAMMA. Fresenius Z Anal Chem 308: 218–220

    CAS  Google Scholar 

  • Eloy JF (1978) Chemical analysis of biological materials with the laser probe mass spectrograph. Microscop Acta Suppl 2: 307–317

    CAS  Google Scholar 

  • Evans CA Jr, Griffiths BW, Dingle T, Southan MJ, Ninham AJ (1983) Microanalysis of bulk samples by laser-induced ion mass analysis. In: Gooley R (ed) Microbeam analysis — 1983. San Francisco Press, San Francisco, pp 101–105

    Google Scholar 

  • Fain GL, Schröder WH (1985) Calcium content and calcium exchange in dark-adapted toad rods. J Physiol 368: 641–665

    PubMed  CAS  Google Scholar 

  • Fenner NC, Daly NR (1966) Laser used for mass analysis. Rev Sci Instrum 37: 1068–1070

    CAS  Google Scholar 

  • Gabriel E, Kato Y, Rech FJ (1981) Preparation methods and LAMMA analysis of dental hard tissue with special respect to fluorine. Fresenius Z Anal Chem 308: 234–238

    CAS  Google Scholar 

  • Gijbels R, Verlodt P, Tavernier S (1982) Anionic surfactant films as standards for quantitative laser microprobe mass analysis. In: Heinrich KFJ (ed) Microbeam analysis — 1982. San Francisco Press, San Francisco, pp 378–382

    Google Scholar 

  • Heinen HJ, Holm R (1984) Recent development with the laser microprobe mass analyzer ( LAMMA ). Scanning Electron Microsc III: 1129–1138

    Google Scholar 

  • Heinen HJ, Schröder W (1981) The technique of LAMMA micromass spectrometry. Biochem Soc Trans 9 /6: 591–593

    PubMed  CAS  Google Scholar 

  • Heinen HJ, Hillenkamp F, Kaufmann R, Schröder W, Wechsung R (1980) LAMMA — A new laser microprobe mass analyzer for biomedicine and material analysis. In: Frigerio A, McCamish M (eds) Recent developments in mass spectrometry in biochemistry and medicine, vol 6. Elsevier Sci Publ, NY, pp 435–459

    Google Scholar 

  • Heinen HJ, Vogt H, Wechsung R (1981) Laser desorption mass spectrometry with LAMMA. Anal Chem 308: 290–296

    CAS  Google Scholar 

  • Heinen HJ, Meier S, Vogt H, Wechsung R (1983) LAMMA 1000, a new laser microprobe mass analyzer for bulk samples. Int J Mass Spectrom Ion Phys 47: 19–22

    CAS  Google Scholar 

  • Heinrich G (1984) LAMMA-Ionenspektren der Fangschleime carnivorer Pflanzen. Biochem Physiol Pflanz 179: 129–143

    CAS  Google Scholar 

  • Heinrich G, Schultze W, Schröder W (1986a) LAMMA Zonenspektren der Milchsäfte höherer Pflanzen. Biochem Physiol Pflanz 181: 227–239

    CAS  Google Scholar 

  • Heinrich G, Kies L, Schröder W (1986b) Eisen-und Mangan-Inkrustierung in Scheiden, Gehäusen und Zellwänden einiger Bakterien, Algen und Pilze des Süßwassers. Biochem Physiol Pflanz 181: 481–496

    Google Scholar 

  • Heinrich G, Kies L, Schröder W (1987) Untersuchungen über die Mineralisierung der Gehäuse von Trachelomonas-Arten (Euglenophyceae) mit Hilfe des Laser Mikrosonden Massenanalysators ( LAMMA ). Phyton (Austria) 26: 219–225

    CAS  Google Scholar 

  • Heinrich G (1989) LAMMA ion spectra of the latices of fungi. J Plant Physiol 133: 770–772

    CAS  Google Scholar 

  • Henstra S, Bisdom EBA, Jongerius A. Heinen HJ, Meier S (1981) Microchemical analysis on thin sections of soils with the laser microprobe mass analyzer ( LAMMA ). Fresenius Z Anal Chem 308: 280–282

    CAS  Google Scholar 

  • Hercules DM (1984) Solid state mass spectrometry using a laser microprobe. In: Vorhees KJ (ed) Anal pyrolysis Chapter I. Butterworths, Lond, pp 1–41

    Google Scholar 

  • Hercules DM, Parker CD, Balasanmugam K, Viswanadham SK (1983) Laser mass spectrometry of organic compounds. In: Benninghoven A (ed) Ion formation from organic solids. Proc Sec Int Conf Münster, Springer Ser Chem Phys 25: 222–228

    Google Scholar 

  • Hillenkamp F (1982) Laser desorption technique of nonvolatile organic substances. Int J Mass Spectrom Ion Phys 45: 305–313

    CAS  Google Scholar 

  • Hillenkamp F (1983) Laser induced ion formation from organic solids. In: Benninghoven A (ed) Ion formation from organic solids. Proc Sec Int Conf Münster, Springer Ser Chem Phys 25: 190–205

    Google Scholar 

  • Hillenkamp F, Kaufmann R, Nitsche R, Unsold E (1975) A high-sensitivity laser microprobe mass analyzer. Appl Phys 8: 341–348

    CAS  Google Scholar 

  • Hillenkamp F, Karas M, Rosmarinowsky J (1985) Processes of laser-induced ion formation in mass spectrometry. In: Lyon PA (ed) Desorption mass spectrometry. ACS Symp Ser 291, Anal Chem Soc, Washington. pp 69–82

    Google Scholar 

  • Hillenkamp F, Bahr U, Karas M, Spengler B (1987) Mechanisms of laser ion formation for mass spectrometric analysis. Scanning Microsc Suppl 1: 33–39

    Google Scholar 

  • Hirche H, Heinrichs J, Schaefer HE, Schramm M (1981) Preparation and analysis of heart and skeletal muscle specimens with LAMMA (laser microprobe mass analysator). Fresenius Z Anal Chem 308: 224–228

    CAS  Google Scholar 

  • Holm R, Kämpf G, Kirchner D (1984) Laser microprobe mass analysis of condensed matter under atmospheric conditions. Anal Chem 56: 690–692

    CAS  Google Scholar 

  • Honig RE, Woolston JR (1963) Laser induced emission of electrons, ions and neutral atoms from solid surfaces. Appl Phys Lett 2: 138–139

    CAS  Google Scholar 

  • Jansen JAJ, Witmer AW (1982) Quantitative inorganic analysis by Q-switched laser mass spectroscopy. Spectrochim Acta 378: 483–491

    Google Scholar 

  • Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57: 2935–2939

    CAS  Google Scholar 

  • Kaufmann R (1986) Laser microprobe mass spectroscopy (LAMMA) of particulate matter. In: Spurny KR (ed) Physical and chemical characterization of individual airborne particles. Horwood, Ltd Publ Chichister, pp 227–244

    Google Scholar 

  • Kaufmann R. Wieser R (1980) Laser microprobe mass analysis (LAMMA) in particle analysis. In: Heinrich KFJ (ed) Characterization of particles. NBS Spec Pub 533, Washington, pp 199–223

    Google Scholar 

  • Kaufmann R, Hillenkamp F, Wechsung R (1979a) The laser microprobe mass analyzer (LAMMA): a new instrument for biomedical microprobe analysis. Med Progr Technol 6: 109–121

    CAS  Google Scholar 

  • Kaufmann R, Hillenkamp F, Wechsung R, Heinen HJ, Schürmann H (1979b) Laser microprobe mass analysis: Achievements and aspects. Scanning Electron Microsc 11: 279–290

    Google Scholar 

  • Kaufmann R, Wieser P, Wurster R (1980) Application of the laser microprobe mass analyzer LAMMA in aerosol research. Scanning Electron Microsc 11: 607–622

    Google Scholar 

  • Kaufmann R, Barths G, Bruch J, Schmitz G (1986) The characterization of coal mine dust particles by LAMMA. In: Adams F, Van Vaeck L (eds) Third Int Laser Microprobe Mass Spectrometry Workshop. Antwerpen, p 121

    Google Scholar 

  • Klein P, Bauch J (1981) Studies concerning the distribution of inorganic wood preservatives in cell wall layers based on LAMMA. Fresenius Z Anal Chem 308: 283–286

    CAS  Google Scholar 

  • Landry JCL, Dennemont J (1984) Speciation of elements in the environment by laser microprobe mass analyser ( LAMMA ). Arch Sci Genève 37: 105–122

    CAS  Google Scholar 

  • Lindner B, Seydel U (1983) Mass spectrometric analysis of drug-induced changes in Na- and K-contents of single bacterial cells. J Gen Microbiol 129: 51–53

    PubMed  CAS  Google Scholar 

  • Lindner B, Seydel U (1984a) Laser desorption mass spectrometry of complex biomolecules at high laser power density. In: Benninghoven A (ed) Secondary ion mass spectrometry. Springer Ser Chem Phys 36: 370–373

    Google Scholar 

  • Lindner B, Seydel U (1984b) Results in taxonomy and physiological state of bacteria derived from laser-induced single cell mass analysis. J Phys Colloque (Paris) 45 (C2): 565–568

    Google Scholar 

  • Lindner B, Seydel U (1985) Laser desorption mass spectrometry of nonvolatiles under shock wave conditions. Anal Chem 57: 895–899

    CAS  Google Scholar 

  • Linton RW, Bryan SR, Schmidt PF, Griffis DP (1985) Comparison of laser and ion microprobe detection sensitivity for lead in biological microanalysis. Anal Chem 57: 440–443

    CAS  Google Scholar 

  • Lorch DW, Schafer H (1981a) Laser microprobe analysis of the intracellular distribution of lead in artificially exposed cultures of Phymatodocis nordstedtiana ( Chlorophyta ). Z Pflanzenphysiol 101: 183–188

    CAS  Google Scholar 

  • Lorch DW, Schäfer H (1981b) Localization of lead in cells of Phymatodocis nordstedtiana (Chlorophyta) with the laser microprobe analyzer (LAMMA 500). Fresenius Z Anal Chem 308: 246–248

    CAS  Google Scholar 

  • Mamyrin BA, Korataev VI, Schmikk DV, Zagulin VA (1973) The mass reflectron, a new ion magnetic time-of-flight mass spectrometer with high resolution. Sov Phys JETP 37: 45–48

    Google Scholar 

  • Mathey A (1981) LAMMA: New perspectives for lichenology. Anal Chem 308: 249–252

    CAS  Google Scholar 

  • Mauney T, Adams F (1984) Laser microprobe mass spectrometry of environmental soot particles. Sci Environ 36: 215–244

    CAS  Google Scholar 

  • Mauney T, Adams F, Sine MR (1984) Laser microprobe mass spectrometry of environmental soot particles. Sci Environ 36: 215–224

    CAS  Google Scholar 

  • Meyer zum Gottesberge (1988) Physiology and pathophysiology of inner ear melanin. Pigment Cell Res 1: 238–249

    PubMed  CAS  Google Scholar 

  • Meyer zum Gottesberge-Orsulakova A (1986) Melanin in the inner ear: Micromorphological and microanalytical investigations. Acta Histochem Suppl XXXII:245–253

    Google Scholar 

  • Michiels E, Van Vaeck L, Gijbels R (1984) The use of the lasermicroprobe mass analyzer for particle characterization and as a molecular microprobe. Scanning Electron Microsc 111: 1111–1128

    Google Scholar 

  • Moesta P, Seydel U, Lindner B. Grisebach H (1982) Detection of Glyceollin on the cellular level in infected soybean by laser microprobe mass analysis. Z Naturforsch 37c: 748–751

    Google Scholar 

  • Musselmann IH, Linton RW, Simons DS (1988) Cluster ion formation under laser bombardment. Studies of recombination using isotope labeling. Anal Chem 60: 110–114

    Google Scholar 

  • Neumann D (1979) Die Röntgenstrahlmikroanalyse and ihre Anwendung in der Pflanzenphysiologie. Biol Rundsch 17: 171–182

    CAS  Google Scholar 

  • Niessner R, Klockow D, Bruynseels F, Van Grieken R (1985) Investigation of heterogeneous reactions of PAH’s on particle surfaces using laser microprobe mass analysis. Int J Environ Anal Chem 22: 281–295

    CAS  Google Scholar 

  • Orsulakova A, Kaufmann R, Morgenstern C, D’Haese M (1981) Cation distribution of the cochlea wall (stria vascularis). Fresenius Z Anal Chem 308: 221–223

    CAS  Google Scholar 

  • Parker CD, Hercules DM (1985) Laser mass spectra of simple aliphatic and aromatic amino acids. Anal Chem 57: 698–704

    CAS  Google Scholar 

  • Parker CD, Hercules DM (1986) Intermolecular proton transfer reactions in the laser mass spectrometry of organic acids. Anal Chem 58: 25–30

    CAS  Google Scholar 

  • Robards AW, Sleytr UB (1985) Low temperature methods in biological electron microscopy. In: Glauert AM (ed) Practical methods in electron microscopy, vol 10. Elsevier, Amst NY, pp 1–551

    Google Scholar 

  • Schiller Ch, Kupka KG, Hillenkamp F (1981) Investigation of the biologically relevant amino acids and some small peptides by laser induced mass spectrometry. Fresenius Z Anal Chem 308: 304–308

    CAS  Google Scholar 

  • Schmidt PF (1986) Detection of lead in human tissue by means of a laser-microprobe-mass-analyser (LAMMA). Trace Elem Med 3: 43–44

    Google Scholar 

  • Schmidt PF, Lehmann RR, Ilsemann K, Wilhelm AH (1983) Distribution patterns of lead in the aortic wall determined by LAMMA. Artery 12: 277–285

    Google Scholar 

  • Schmidt PF, Barckhaus R, Kleimeier W (1986) Laser microprobe mass analyser ( LAMMA) investigations on the localization of cadmium in renal cortex of rats after long-term exposure to cadmium. Trace Elem Med 3: 19–24

    CAS  Google Scholar 

  • Schnepf E (1963) Zur Cytologie und Physiologie pflanzlicher Drüsen. 1. Ãœber den Fangschleim der Insektivoren. Flora 153: 1–22

    Google Scholar 

  • Schnepf E (1972) über die Wirkung von Hemmstoffen der Proteinsynthese auf die Sekretion des Kohlenhydrat-Fangschleimes von Drosophyllum lusitanicum. Planta 103:334–339

    CAS  Google Scholar 

  • Schröder WH (1981) Quantitative LAMMA analysis of biological specimens. I Standards II. Isotope labelling. Fresenius Z Anal Chem 308: 212–217

    Google Scholar 

  • Schröder WH, Fain GL (1984) Light-dependent calcium release from photoreceptors measured by laser micro-mass analysis. Nature (Lond) 309: 268–270

    Google Scholar 

  • Schröder WH, Bauch J, Endeward R (1988) Microbeam analysis of Ca exchange and uptake in the fine roots of spruce: influence of pH and aluminum. Trees 2: 96–103

    Google Scholar 

  • Schueler B, Feigl P, Krueger FR, Hillenkamp F (1981) Cationization of organic molecules under pulsed laser induced ion generation. Org Mass Spetr 16: 502–506

    CAS  Google Scholar 

  • Seiler H, Haas U, Rentschler I, Schreiber H, Wieser P, Wurster R (1981) Einige Untersuchungen an atmosphärischen Aerosolpartikeln. Optik 58: 145–157

    CAS  Google Scholar 

  • Seydel U, Heinen HJ (1980) First results in fingerprinting of single mycobacterial cells with LAM MA. In: Frigerio A, McCamish M (eds) Recent developments in mass spectrometry in biochemistry and medicine. Elsevier Sci Publ, Amst 6: 489–496

    Google Scholar 

  • Seydel U, Lindner B (1981) Qualitative and quantitative investigations on Mycobacteria with LAMMA. Fresenius Z Anal Chem 308: 253–257

    CAS  Google Scholar 

  • Seydel U, Lindner B (1983) Mass spectrometry of organic compounds (2000 amu) and tracing of organic molecules in plant tissue with LAMMA. In: Benninghoven A (ed) Ion formation from organic solids. Proc Sec Int Conf Münster, Springer Ser Chem Phys 25: 240–244

    Google Scholar 

  • Seydel U, Lindner B, Wollenweber HW,Rietschel ET (1984) Structural studies on the lipid A component of enterobacterial lipopolysaccharides by laser desorption mass spectrometry. Eur J Biochem 145: 505–509

    CAS  Google Scholar 

  • Seydel U, Lindner B, Dhople AM (1985) Results from cation and mass fingerprint analysis of single cells and from ATP measurements of M. leprae for drug sensitivity testing: A comparison. Int J Leprosy 53: 365–372

    CAS  Google Scholar 

  • Sprey B, Bochem HP (1981) Uptake of uranium into the alga Dunaliella detected by EDAX and LAMMA. Fresenius Z Anal Chem 308: 239–245

    CAS  Google Scholar 

  • Stienen H, Bauch J (1988) Element content in tissue of spruce seedlings from hydroponic cultures simulating acidification and deacidification. Plant Soil 106: 231–238

    CAS  Google Scholar 

  • Surkyn P, Adams F (1982) Laser microprobe mass analysis of glass microparticles. J Trace Microprobe Techn 1: 79–114

    CAS  Google Scholar 

  • Surkyn P, De Waele J, Adams F (1983) Laser microprobe mass analysis for source identification of air particulate matter. Int J Environ Anal Chem 13: 257–274

    CAS  Google Scholar 

  • Truchet M (1975) Application de la microanalyse par emission ionique secondaire aux coupes histologiques: Localisation des principeaux isotopes de divers eléments. J Microsc 24: 1–22

    CAS  Google Scholar 

  • Van der Peijl GJQ (1984) Desorption and ionization processes in laser mass spectrometry. PhD Thesis, Univ Amsterdam

    Google Scholar 

  • Verbueken AH, Van Grieken RE, Paulus GJ, De Bruijn WV (1984) Embedded ion exchange beads as standards for laser microprobe mass analysis of biological specimens. Anal Chem 56: 1362–1370

    CAS  Google Scholar 

  • Verbueken AH, Bruynseels FJ, Van Grieken RE (1985a) Laser microprobe mass analysis: A review of applications in the life sciences. Biomed Mass Spectrom 12: 438–463

    CAS  Google Scholar 

  • Verbueken AH, Van de Vyver FL, Van Grieken RE, De Broe ME (1985b) Microanalysis in biology and medicine: ultrastructural localization of aluminum. Clin Nephrol Suppl 1 24: 558–577

    Google Scholar 

  • Verbueken AH, Bruynseels FJ, Van Grieken R, Adams F (1988) Laser Microprobe mass spectrometry. In: Winevordner JD (ed) Chemical analysis. A series of monographs on analytical chemistry and its application, vol 95. Wiley, NY, pp 173–256

    Google Scholar 

  • Vogt H, Heinen HJ, Meier S, Wechsung R (1981) LAMMA 500 — principle and technical description of the instrument. Anal Chem 308: 195–200

    CAS  Google Scholar 

  • Vogt H, Heinen HJ, Meier S (1983) LAMMA — a new approach for the application of lasers in the analysis of bulk material. Laser Optoelektronik 1: 23–29

    Google Scholar 

  • Wechsung R, Hillenkamp F, Kaufmann F, Nitsche R, Vogt H (1978) LAMMA a new laser microprobe mass analyzer. Scanning Electron Microsc I:611–620

    Google Scholar 

  • Wieser P, Wurster R, Seiler H (1980) Identification of airborne particles by laser-induced mass spectroscopy. Atmos Environ 14: 485–494

    CAS  Google Scholar 

  • Wieser P, Wurster R, Hass RU (1981) Application of LAMMA in aerosol research. Fresenius Z Anal Chem 308: 260–269

    CAS  Google Scholar 

  • Wieser P, Wurster R, Seiler H (1982) Laser microprobe mass analysis of doped epoxy resin standards. Scanning Electron Microsc IV:1435–1441

    Google Scholar 

  • Wink M, Heinen HJ, Vogt H, Schiebel HM (1984) Cellular localization ofquinolizidine alkaloids by laser desorption mass spectrometry (LAMMA 1000). Plant Cell Rep 3: 230–233

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinrich, G. (1990). Laser Physical Methods: Laser Microprobe Mass Spectrometry. In: Linskens, HF., Jackson, J.F. (eds) Physical Methods in Plant Sciences. Modern Methods of Plant Analysis, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83611-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83611-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83613-8

  • Online ISBN: 978-3-642-83611-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics