Skip to main content

Phase Changes of a Large-Heat-Capacity Fluid in Transcritical Expansion Flows

  • Conference paper
Adiabatic Waves in Liquid-Vapor Systems

Summary

Substances of large heat capacity are able to undergo complete adiabatic liquid-vapour phase changes. The soundspeed discontinuities at the phase boundaries give rise to various real flow effects. The investigation of Laval nozzle flows assuming phase equilibrium shows discontinues choking at the liquid phase boundary. At the vapour phase boundary up to three shocks can occur simultaneously in the nozzle: one expansion shock and two compression shocks.

In the experiment the initial conditions in the blowdown reservoir are chosen such that the expansion adiabats intersect the two-phase region close to the critical point. The phase boundary reached first during the expansion appears as a pronounced nucleation front. At the second phase boundary the influence of the distribution of liquid and vapour on the transfer processes becomes apparent. During the expansion process on subcritical adiabats the remaining liquid forms relatively large droplets. The transition to the pure gas flow spreads over a large spatial region. On supercritical adiabats, however, the two-phase state is reached coming from the gas phase. The re-evaporation of the small condensation nuclei is completed in a distinct evaporation front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson, P.A.: On the possibility of complete condensation shock waves in retrograde fluids. J. Fluid Mech. 70 (1975), 639–649.

    Article  ADS  Google Scholar 

  2. Meier, G.E.A. and Thompson, P.A.: Real gas dynamics of fluids with high specific heat. Lecture Notes in Physics: Flow of Real Fluids (G.E.A. Meier and F. Obermeier, eds.) vol. 235, 103–114, Springer 1985.

    Google Scholar 

  3. Chaves, H.; Lang, H., Meier; G.E.A. and Speckmann, H.-D.: Adiabatic phase transitions and wavesplitting in fluids of high specific heat. Lecture Notes in Physics: Flow of Real Fluids (G.E.A. Meier and F. Obermeier, eds.) vol. 235, 115–124, Springer 1985.

    Google Scholar 

  4. Thompson, P.A.; Carofano, G.C. and Kim, Y.-G.: Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube. J. Fluid Mech. 166 (1986), 57–92.

    Article  MATH  ADS  Google Scholar 

  5. Thompson, P.A.; Chaves, H., Meier; G.E.A., Kim, Y.-G. and Speckmann, H.-D.: Wave splitting in a fluid of large heat capacity. J. Fluid Mech. 185 (1987), 385–414.

    Article  ADS  Google Scholar 

  6. Thompson, P.A. and Lambrakis, K.C.: Negative shock waves. J. Fluid Mech. 60 (1973), 187–208.

    Article  MATH  ADS  Google Scholar 

  7. Borisov, A.A.; Borisov, Al.A.; Kutateladze, S.S. and Kakoryakov, V.E.: Rarefaction shock waves near the critical liquid vapour point. J. Fluid Mech. 126 (1983), 59–73.

    Article  ADS  Google Scholar 

  8. Tielsch, H. and Tanneberger, H.: Ultraschallausbreitung in Kohlensäure in der Nähe des kritischen Punktes. Zeitschrift für Physik 137 (1954), 256–264.

    Article  ADS  Google Scholar 

  9. Garland, C.W. and Williams, R.D.: Low-frequency sound velocity near the critical point of Xenon. Phys. Rev. A 10 (1974), 1328–1332.

    Article  ADS  Google Scholar 

  10. Thompson, P.A.; Kim, Y.-G. and Chan, Y.: Nonequilibrium, near-critical states in shock-tube experiments. Shock Tubes and Waves (H. Grönig, ed.), 343–349, VCH Publ. 1987.

    Google Scholar 

  11. Abbott, M.M.: Cubic equations of state. AIChE J. 19 (1973), 596–601.

    Article  Google Scholar 

  12. Chaves, H.: Phasenübergänge und Wellen bei der Entspannung von Fluiden hoher spezifischer Wärme. Mitteilg. Max-Planck-Insritut für Strömungsforschung, Göttingen, Nr. 77 (1984).

    Google Scholar 

  13. Collins, R.L.: Choked expansion of subcooled water and the I.H.E. flow model. Trans. ASME, J. Heat Transfer 100 (1978), 275–280.

    Article  Google Scholar 

  14. Thompson, P.A.: A fundamental derivative in gasdynamics. Ph.Fluids 14 (1971), 1843–1849.

    Google Scholar 

  15. Meier, G.E.A.: Zur Realgasdynamik der Fluide hoher spezifischer Wärme. Habilitationsschrift, Universität Göttingen, 1987.

    Google Scholar 

  16. Schlichting, H.: Boundary Layer Theory. McGraw Hill 1979.

    Google Scholar 

  17. Reid, R.C.; Prausnitz, J.M. and Sherwood, K.T.: The Properties of Gases and Liquids. McGraw Hill 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zauner, E., Meier, G.E.A. (1990). Phase Changes of a Large-Heat-Capacity Fluid in Transcritical Expansion Flows. In: Meier, G.E.A., Thompson, P.A. (eds) Adiabatic Waves in Liquid-Vapor Systems. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83587-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83587-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83589-6

  • Online ISBN: 978-3-642-83587-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics