Zonal Solutions of Three-Dimensional Viscous Flow Problems

  • M. A. Schmatz
  • F. Monnoyer
  • K. M. Wanie
  • E. H. Hirschel
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


A method is summarized for the calculation of three-dimensional viscous flows about general configurations, namely a close coupling procedure (CCPNS) in which the full Navier-Stokes equations are solved only in regions of strong viscous-inviscid interaction. In the remaining part of the flow, the coupled Euler/boundary-layer equations are employed. CCPNS is an option in the governing Navier-Stokes code NSFLEX to reduce computation cost. Several applications demonstrate the efficiency of the method. Good agreement with full NSFLEX results is achieved.


Inviscid Flow Zonal Solution Reduce Computation Cost Airfoil Flow RAE2822 Airfoil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hirschel, E.H., Schmatz, M.A.: Zonal solutions for viscous flow problems. Vol. 14, Notes Num. F1. Mech., Vieweg, 1986, pp. 99–112.Google Scholar
  2. [2]
    Schmatz, M.A.: Simulation of viscous flows by zonal solutions of the Euler, boundary-layer and Navier-Stokes equations. ZFW, Vol. 11, 1987, pp. 281–290.Google Scholar
  3. [3]
    Wanie, K.M., Schmatz, M.A., Monnoyer, F.: A close coupling procedure for zonal solutions of the Navier-Stokes, Euler and boundary-layer equations. ZFW, Vol. 11, 1987, pp. 347–359.Google Scholar
  4. [4]
    Flores, J., Holst, T.L., Kaynak, U., Gundy, K.L., Thomas, S.D.: Transonic Navier-Stokes wing solutions using a zonal approach. AGARD CP412, 1986, 30A-1 to 30A-12.Google Scholar
  5. [5]
    Van Dalsem, W.R., Steger, J.L.: Using the boundary-layer equations in 3D viscous flow simulation. AGARD CP412, 1986, 24–1 to 24–12.Google Scholar
  6. [6]
    Wanie, K.M.: Simulation dreidimensionaler Strömungen durch lokale Lösungen der Navier-Stokesschen Gleichungen. Doctoral Thesis, Technical University Munich, 1988.Google Scholar
  7. [7]
    Monnoyer, F., Wanie, K.M., Schmatz, M.A.: Calculations of the three-dimensional viscous flow past ellipsoids at incidence by zonal solutions. Vol. 20, Notes Num. F1. Mech., Vieweg, 1988.Google Scholar
  8. [8]
    Schmatz, M.A.: Three-dimensional viscous flow simulations using an implicit relaxation scheme. Vol. 22, Notes Num. F1. Mech., Vieweg, 1988.Google Scholar
  9. [9]
    Schmatz, M.A., Brenneis, A., Eberle, A.: Verification of an implicit relaxation method for steady and unsteady viscous and inviscid flow problems. AGARD CP437, 1988, pp. 15–1 to 15–33.Google Scholar
  10. [10]
    Monnoyer, F.: Calculation of 3D attached viscous flows on general configurations with second-order boundary layer theory. To be published in 1988.Google Scholar
  11. [11]
    Monnoyer F.: Second-Order Three-Dimensional Boundary Layers. Vol. 13, Notes Num. F1. Mec., Vieweg, 1986, pp. 217–278.Google Scholar
  12. [12]
    Hirschel, E.H., Kordulla, W.: Shear-flow in surface oriented coordinates. Vol. 4, Notes Num. Fl. Mec., Vieweg, 1981.Google Scholar
  13. [13]
    Eberle, A.: Characteristic flux averaging approach to the solution of Euler’s equations. VKI lecture series, Comp. fl. dyn., 1987–04, 1987.Google Scholar
  14. [14]
    Schwarz, W.: Elliptic grid generation system for three-dimensional configurations using Poisson’s equation. 1st Int. Conf. Num. Grid Generation in Comp. Fluid Dyn., Pineridge Press, 1986.Google Scholar
  15. [15]
    Monnoyer, F.: Three-dimensional, laminar and turbulent, compressible boundary layers including the effect of surface curvature and application to zonal solution of the Navier-Stokes equations. To appear in: Proc. 12th DEA Meeting, May 3–4, Bethesda (Md), 1988.Google Scholar
  16. [16]
    Meier H.U, Kreplin H.-P., Landhäußer A.: Wall Pressure Measurement on 1:6 Prolate Spheroid in the DFVLR 3mx3m Low Speed Wind Tunnel. DFVLR IB 222–86 A 04, 1986.Google Scholar
  17. [17]
    Schmatz, M.A., Monnoyer, F., Wanie, K.M.: Numerical simulation of transonic wing flows using a zonal Euler/boundary-layer/Navier-Stokes approach. ICAS-paper 88–4. 6. 3, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • M. A. Schmatz
    • 1
  • F. Monnoyer
    • 1
  • K. M. Wanie
    • 2
  • E. H. Hirschel
    • 1
  1. 1.Messerschmitt-Bölkow-Blohm GmbH, FE122München 80Germany
  2. 2.Lehrstuhl für StrömungsmechanikTechnische Universität MünchenMünchen 2Germany

Personalised recommendations