Unsteady Phenomena

  • G. E. A. Meier
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The large variety of unsteady phenomena in transonic flow is divided in four main groups depending on if there is a crucial influence of viscosity or not on the mechanism of unsteadiness and if it is a forced or self-excited non-stationary behaviour. The main forced, inviscid interactions are due to gusts, shock waves and changes of gas properties. Forced viscid interactions are unsteady separations by shocks and vortices. The inviscid self-excited instabilities can be seen in flutter, cavity oscillations and condensation oscillations. Self-excited instabilities of the viscid type occur both for shock boundary-layer and shock shear-layer interaction.


Transonic Flow AIAA Journal Laval Nozzle Unsteady Behaviour Shock Boundary Layer Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ballhaus, W.F. and P.M. Goorjian: Implicit Finite- Difference Computations of Unsteady Transonic Potential Flows About Airfoils, Including the Treatment of Irregular Shock-Wave Motions, AIAA Paper, 77–205 (1977).Google Scholar
  2. 2.
    Borland, C.J., D.P. Rizetta and H. Yoshihara: Numerical Solution of Three-Dimensional Unsteady Transonic Flow over Swept Wings. AIAA Journal Vol. 20 No. 3, 340–347 (1982).CrossRefMATHADSGoogle Scholar
  3. 3.
    Caradonna, F.X. and M.P. Isom: Numerical Calculation of Unsteady Transonic Potential Flow over Helicopter Rotor Blades, AIAA Journal, Vol. 14 No. 4, 482–488 (1976).CrossRefMATHADSGoogle Scholar
  4. 4.
    Chyu, W.J., S.S. Davis and K.S. Chang: Calculation of Unsteady Transonic Flow over an Airfoil. AIAA Journal Vol. 19, No. 6, 684–690 (1980).CrossRefADSGoogle Scholar
  5. 5.
    Dowell, E.H.: A Simplified Theory of Oscillating Airfoils in Transonic Flow, Proc. Symp. Unsteady Aerodyn. Tucson, Vol II, 655–679 (1975).Google Scholar
  6. 6.
    Goldstein, M.E., W. Braun and J.J. Adamczyk: Unsteady Flow in a Supersonic Cascade with Strong In-Passage Shocks, J. Fluid Mech., Vol. 83 No. 3, 569–604 (1977).CrossRefMATHADSGoogle Scholar
  7. 7.
    Landahl, M.: Unsteady Transonic Flow, Pergamon Press, (1961).Google Scholar
  8. 8.
    Levy Jr., L.L: Experimental and Computational Steady and Unsteady Transonic Flows about a Thick Airfoil. AIAA Journal Vol. 16, No. 6, 564–572 (1978).CrossRefADSGoogle Scholar
  9. 9.
    Magnus, R. and H. Yoshihara: The Transonic Oscillating Flap, AIAA Paper, 79–327 (1976).Google Scholar
  10. 10.
    McCroskey, W.J.: Unsteady Airfoils. Ann. Rev. Fluid Mech. 14, 285–310 (1982).CrossRefADSGoogle Scholar
  11. 11.
    Meier, G.E.A., H.-M. Lent and K.F. Löhr: Sound generation and Flow interaction of Vortices with an Airfoil and a flat plate in Transonic Flow. (1987).Google Scholar
  12. 12.
    Rein, M., G. Grabitz and G.E.A. Meier: Instationäre Strömung in einer Lavaldüse mit zeitabhängigem Querschnitt. Z. angew. Math. Mech. 68, pp 337 (1988).Google Scholar
  13. 13.
    Seegmiller, H.L., J.G. Marvin and L.L. Levy Jr.: Steady and Unsteady Transonic Flow. AIAA Journal Vol. 16, No. 12, 1262–1270 (1978).CrossRefADSGoogle Scholar
  14. 14.
    Tijdeman, H. and R. Seebass: Transonic Flow past oscillating Airfoils. Ann.Rev. Fluid Mech. 12, 181–222 (1980).CrossRefADSGoogle Scholar
  15. 15.
    Traci, R.M., E.D. Albano and J.L. Farr: Small-Disturbance Transonic Flows about Oscillating Airfoils and Planar Wings, AFFDL-TR-75–10 (1975).Google Scholar
  16. 16.
    Williams, M.H., S.R. Bland and J.W. Edwards: Flow instabilities in transonic small-disturbance theory. AIAA Journal 23, 1491–1496 (1985).CrossRefADSGoogle Scholar
  17. 17.
    Sears, W.R.: Aerodynamics, Noise, and the Sonic Boom. AIAA Journal Vol. 7, No. 4, 577–586 (1969).CrossRefMATHADSMathSciNetGoogle Scholar
  18. 18.
    Lent, H.-M.: Schallentstehungsmechanismen in transsonischen Strömungen beim Auftreffen von Wirbeln auf eine Profilvorderkante. MPI Strömungsf. Bericht 5 (1986).Google Scholar
  19. 19.
    Meier, G.E.A. and R. Timm: Unsteady Vortex Airfoil Interaction. Conf. Proc. 386 Unsteady Aerodynamics-Fundamentals and Applications to Aircraft Dynamics (1985).Google Scholar
  20. 20.
    McCroskey, W.J. and G.R. Srinivasan: Transonic interaction of unsteady vortical flows. NASA tech. Memorandum 86658, (1984).Google Scholar
  21. 21.
    Möhring, W.F., E.A. Müller and F.F. Obermeier: Schallerzeugung durch instationäre Strömung als singuläres Problem. ACUSTICA Vol. 21 (1969).Google Scholar
  22. 22.
    Nakagawa, T., G.E.A. Meier, R. Timm and H.-M. Lent: Vortex Shedding of a Square Cylinder in front of a Slender Airfoil at High Reynolds Numbers, Part 2: Compressibility Effect. MPI Strömungsf. Bericht 24, (1985).Google Scholar
  23. 23.
    Nakagawa, T., G.E.A. Meier, R. Timm and H.-M. Lent: Compressible flows in the wakes of a square cylinder and thick airfoil arranged in tandem. Proc. R. Soc. Lond. 411, 379–394 (1987).CrossRefADSGoogle Scholar
  24. 24.
    Adamson, T.C.: Unsteady transonic flows in two-dimensional channels. J. Fluid Mech 52, 437–449 (1972).CrossRefMATHADSGoogle Scholar
  25. 25.
    Messiter, A.F and T.C. Adamson Jr.: Forced oscillations of transonic channel and inlet flows with shock waves. AIAA Journal 22, 1590–1599 (1984).CrossRefMATHADSGoogle Scholar
  26. 26.
    Rein, M.: Berechnung einer instationären transsonischen Strömung mit Verdichtungsstößen und Ablösung in Laval-düsen. MPI Strömungsf. Bericht 14, (1984).Google Scholar
  27. 27.
    Rein, M., G. Grabitz and G.E.A. Meier: Nonlinear Wave Propagation in Transonic Nozzle Flows. To be published in Journ. of Sound and Vibration (1988).Google Scholar
  28. 28.
    Ehrenfried, K.: Dynamik der Lavaldüsenströmung bei unterschiedlichen Randbedingungen. Diplomarbeit (1987).Google Scholar
  29. 29.
    Mabey. D.G. and J.R. Chambers: Report on Unsteady Aerodynamics-Fundamentals and Application to Aircraft Dynamics. AGARD Report No. 222 (1986).Google Scholar
  30. 30.
    Bisplinghoff, R.L. and H. Ashley: Principles of Aero-elasticity, J. Wiley and Sons, Inc., (1962).Google Scholar
  31. 31.
    Bodapati, S. and C.S. Lee: Unsteady Wake Measurements of an Oscillating Flap at Transonic Speeds. Conf. proc. AIAA-84–1563 (1984).Google Scholar
  32. 32.
    Horiuti, K., W.J. Chyu and D.A. Buell: Unsteady, Transonic Flow Computations for an Airfoil with an Oscillating Flap. Conf. proc. AIAA-84–1562 (1984).Google Scholar
  33. 33.
    Brocher, E., A. Maresca, and M.-H.Bournay: Fluid dynamics of the resonance tube. J. Fluid Mech. 43, 369–384 (1970).CrossRefADSGoogle Scholar
  34. 34.
    Eastep, F.E. and J.J. Olsen: Transonic Flutter Analysis of a Rectangular Wing with Conventional Airfoil Sections. AIAA Journal Vol. 18, No. 10, 1159–1164 (1980).CrossRefADSGoogle Scholar
  35. 35.
    Hartmann, J., and B. Trolle: Modus operandi of the air jet-pulsator. Dan. Mat. Fys. Medd. 10 (1930).Google Scholar
  36. 36.
    Jungowski, W.M., and G.E.A Meier: Planar jets impinging on various obstacles and some modes of flow oscillations. Mitt. Max-Planck-Institut für Strömungsforschung, Göttingen, 78 (1984).Google Scholar
  37. 37.
    Jungowski, W.M. and G. Grabitz: Self-sustained oscillation of a jet impinging upon a Helmholtz resonator. J. Fluid Mech. 179, 77–103 (1987).CrossRefADSGoogle Scholar
  38. 38.
    Rockwell, D. and E. Naudascher: Review: Self-sustaining oscillations of flow past cavities. Trans. ASME, Vol. 100, 152–165 (1978).Google Scholar
  39. 39.
    Thompson, P.A.: Jet-driven tube. AIAA J. 2, 1230–1233 (1964).CrossRefGoogle Scholar
  40. 40.
    Zierep, J. and S. Lin: Ein Ähnlichkeitsgesetz für instationäre Kondensationsvorgänge in der Laval-Düse. Forschung im Ingenieurwes. 34, 97–99 (1968).CrossRefGoogle Scholar
  41. 41.
    Nakagawa, T., G.E.A. Meier, R. Timm and H.-M. Lent: Influence of Shape on Vortex Shedding from Two-Dimensional Cylinders at High Reynolds Number and High Subsonic Mach Number. MPI Strömungsf. Bericht 22, (1985).Google Scholar
  42. 42.
    Anderson, J.S., W.M. Jungowski, W.J. Hiller and G.E.A. Meier: Flow Oscillations in a Duct with a Rectangular Cross-Section, J. Fluid Mech. Vol 79, Pt 4 796–784 (1977).CrossRefGoogle Scholar
  43. 43.
    Jungowski, W.M.: On the pressure oscillating in a sudden enlargement of a duct section. Fluid Dyn. Trans. 3, 735–741 (1967).Google Scholar
  44. 44.
    Meier, G.E.A., G. Grabitz, W.M. Jungowski, K.J. Witzcak and J.S. Anderson: Oscillations of the Supersonic Flow Downstream of an Abrupt Increase in the Duct Cross-Section. AIAA Journal Vol. 18, No. 4, pp 394 (1979).CrossRefADSGoogle Scholar
  45. 45.
    Roshko, A. and G.J. Thomke: Observations of turbulent reattachment behind an axisymmetric downstream-facing step in supersonic flow. Douglas Report SM-4 3069 (1965).Google Scholar
  46. 46.
    Szumowski, A.P., W.C. Selerowicz and G.E.A. Meier: Oscillations of a subsonic flow in an abruptly expanding circular duct. Lecture Notes in Physics (Flow of Real Fluids), Springer Verlag 235, 28–40 (1985).Google Scholar
  47. 47.
    Bogar, T.J.: Structure of self-excited oscillations in transonic diffuser flows. AIAA Journal 24, 55–61 (1986).CrossRefADSGoogle Scholar
  48. 48.
    Bohning, R. and J. Zierep: Stoß-Grenzschichtinterferenz bei turbulenter Strömung an gekrümmten Wänden mit Ablösung. Z. Flugwiss. Weltraumforsch. 6 Heft 2, 68–74 (1982).Google Scholar
  49. 49.
    Dailey, C.L.: Supersonic diffuser instability. J. Aero. Space Sci. 22, 733–749 (1955).Google Scholar
  50. 50.
    Davis, S.S. and G.N. Malcolm: Transonic Shockwave/Boundary-layer interactions on an oscillating airfoil. AIAA Journal 18, 1306–1312 (1980).CrossRefADSGoogle Scholar
  51. 51.
    Krohn, E.-O., G. Jungclaus and H.-L. Weinreich: Überschalleinlauf-Instabilitäten (“Inlet Buzz”). To be published in Z.f.W (1989).Google Scholar
  52. 52.
    Liou, M.S: Analysis of viscous-inviscid interactions in transonic internal flows with a shock wave and mass transfer. AIAA paper 81–0004 (1981).Google Scholar
  53. 53.
    Rein, M., G. Grabitz and G.E.A. Meier: Strömungsschwin- gungen in Lavaldüsen. ZFW 10, 1–4 (1986).Google Scholar
  54. 54.
    Sajben, M., T.J. Bogar and J.C. Kroutil: Forced oscillation experiments in supercritical diffuser flows. AIAA Journal 22, 465–474 (1984).CrossRefADSGoogle Scholar
  55. 55.
    Salmon, J.T., T.J. Bogar and M. Sajben. Laser doppler velocimeter measurements in unsteady, separated, transonic diffuser flows. AIAA Journal 21, 1690–1697 (1983).CrossRefADSGoogle Scholar
  56. 56.
    Schadow, K.C., J.E. Crump and F.S. Blomshield: Cumbustion instability in a research dump Cumbustor: inlet shock oscillations. CPIA Pub 347 Vol. III, 357–370 (1981).Google Scholar
  57. 57.
    Szumowski, A.P. and W.C. Selerowicz: Oscillations of a subsonic flow in an abruptly expanding circular duct. Lect. Notes Phys., Vol. 235, 28–40 (1985).CrossRefADSGoogle Scholar
  58. 58.
    Anderson, J.S., W.M. Jungowski, G.E.A. Meier and K.J. Witczak: Self-Excited Oscillations in a Duct Flow with oblique shock waves. Proc. Inst. Acoust. (1978).Google Scholar
  59. 59.
    Anderson, J.S., W.M. Jungowski, W.J. Hiller and G.E.A. Meier: Flow oscillations in a duct with a rectangular cross-section. J. Fluid Mech. Vol. 79 /4, 769–784 (1977).CrossRefADSGoogle Scholar
  60. 60.
    Anderson, J.S., G. Grabitz, G.E.A. Meier, W.M. Jungowski and K.J. Witczak: Base pressure oscillations in a rectangular duct with an abrupt enlargement. Arch. Mech. 30/4–5, 337–351 (1978).Google Scholar
  61. 61.
    Basler, D.: Experimentelle Untersuchungen der Ausbreitung stoßinduzierter Störungen an transsonischen Profilen (1987).Google Scholar
  62. 62.
    Ho, C.-M. and N.S. Nosseir: Dynamics of an impinging jet. Part 1, J. Fluid Mech. Vol. 105, 119–142 (1981).CrossRefADSGoogle Scholar
  63. 63.
    Meier, G.E.A. and A.P. Szumowski: Oscillatory Instabilities in Internal Transonic Flow. To be published, (1988).Google Scholar
  64. 64.
    Neuwerth, G.: Akustische Rückkopplungserscheinungen am Unter-und Überschallfreistrahl, der auf einen Störkörper trifft. DLR-FB 72–72, (1972).Google Scholar
  65. 65.
    Powell, A.: On the Mechanism of choked Jet Noise, Proc. Phys. Soc., Vol 66B, 1039–1056 (1977).ADSGoogle Scholar
  66. 66.
    Rockwell, D. and E. Naudascher: Self-sustained oscillations of impinging free shear-layers. Ann. Rev. Fluid Mech. Vol. 11, 67–94 (1979).CrossRefADSGoogle Scholar
  67. 67.
    Szumowski, A.P. and G.E.A. Meier: Schwingungen der Überschallströmung in einem Kanal mit Querschnittssprung. MPI Strömungsf. Bericht 23 (1978).Google Scholar
  68. 68.
    Wagner, F.-R.: Zum Schall-und Strömungsfeld eines axial-symmetrischen Freistrahls beim Auftreffen auf eine Wand. Z. Flugwiss. Vol. 19 No. 1, 30–44 (1971).Google Scholar
  69. 69.
    Anderson, J.S., W.M. Jungowski, W.J. Hiller and G.E.A. Meier: Flow oscillations in a duct with a rectangular cross-section. J. Fluid Mech. 79, 739–748 (1977).CrossRefADSGoogle Scholar
  70. 70.
    Bogdanov, S.L., J.E. Vas: Preliminary investigations of spiked bodies at hypersonic speeds. J. Aero. Space Sci. 26, 65–74 (1982).Google Scholar
  71. 71.
    Délery, J.M.: Shock-wave boundary-layer interaction. AGARD-AG 280 (1986).Google Scholar
  72. 72.
    Dvorak, R.: On the unsteady boundary layer-shock wave interaction in the lower transonic region. Arch. Mech. 16, 211–222 (1964).Google Scholar
  73. 73.
    Ferri, A. and A.M. Nucci: The origin of aerodynamic instabilities of supersonic inlets at subcritical conditions. NACA RM L 50 K 30 (1951).Google Scholar
  74. 74.
    Hasan, M.A.Z. and A.K.M Hussain: The “whistle-nozzle” phenomenon. J. Fluid Mech. 115 134, 433–458 (1983).Google Scholar
  75. 75.
    Meier, G.E. A. and W.J. Hiller: An experimental investi- gation of unsteady transonic flow by high-speed inter-ferometric photography, AGARD Conf. Proc. No. 35 /9 (1968).Google Scholar
  76. 76.
    Meier, G.E.A.: Shock-induced oscillations on a Laval nozzle. IUTAM Symp. Transonicum II, Springer Verlag, 252–261 (1976).Google Scholar
  77. 77.
    Rein, M., G. Grabitz and G.E.A. Meier: Strömungsschwin- gungen in Lavaldüsen. ZFW 10, 1–4 (1986).Google Scholar
  78. 78.
    Selerowicz, W.C., A.P. Szumowski and G.E.A. Meier: Experimentelle Untersuchungen schwingender Strömungen in einer Rohrdüse mit Querschnittssprung. Max-PlanckInstitut für Strömungsf. Göttingen, Bericht 2 (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • G. E. A. Meier
    • 1
  1. 1.Max-Planck-Institut für StrömungsforschungGöttingenGermany

Personalised recommendations