Advertisement

Wind Tunnel Studies of Natural Shock Wave — Separation Instabilities for Transonic Airfoil Tests

  • J. B. Dor
  • A. Mignosi
  • A. Seraudie
  • B. Benoit
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

Transonic wind tunnel tests on 2D airfoils with tripped transition and unsteady wall pressure or laser velocimetry measurements show that buffeting appears, at high lift coefficient, like a well-established oscillation of the upperside shock wave and the separated flow which is born at its foot. During cryogenic tests at high Reynolds numbers, the buffeting onset conditions and the nature and the intensity of the phenomenon are not clearly modified, but a specific temperature effect on the oscillation frequency, through sound speed variation, is observed. For free transition tests at low Reynolds number, the boundary layer remains laminar up to the shock and the oscillation does not appear in buffeting conditions, there is only a strong increase of the pressure fluctuation level on the airfoil, without any particular frequency. The characteristics (extent, sensitivity) of the separated flow which is generated by the interaction between shock wave and boundary layer seem to govern these instabilities.

Keywords

Shock Wave Mach Number Wind Tunnel Separate Flow Phase Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GIRODROUX-LAVIGNE P. and LE BALLEUR J.C. Unsteady viscous-inviscid interaction method and computation of buffeting over airfoils Proceeding Springer Verlag Joint IMA/SMAI Conference “Computational Methods in Aeronautical Fluid Dynamics”, University of Reading, April 1987 ONERA TP N° 1987–58Google Scholar
  2. 2.
    BENOIT B. and LEGRAIN I. Buffeting prediction for transport aircraft applications based on unsteady pressure measurements AIAA 5th Applied Aerodynamics Conference, Monterey (California), August 1987 ONERA TP N° 1987–122Google Scholar
  3. 3.
    DESTUYNDER R., SCHMITT V., BERGER J. and BARREAU R. Des difficultés de prédire en soufflerie le tremblement d’un avion moderne. Remèdes proposés Meeting FDP/AGARD “Symposium on Aerodynamic Data Accuracy and Quality: Requirements and Capabilities in Wind Tunnel Testing”. AGARD-CP 429 (1987) ONERA TP N° 1987–159Google Scholar
  4. 4.
    B.H.K. LEE, L.H. OHMAN Unsteady pressure and force measurements associated with transonic buffeting of a two-dimensional supercritical airfoil Aeronautical Note NAE-AN-14 NRC N° 22448, June 1983Google Scholar
  5. 5.
    MIGNOSI A., SERAUDIE A., BONNET J.L. and ARCHAMBAUD J.P. La vélocimétrie laser. Critique des mesures Conférence “Progrès et problèmes des moyens d’essais industriels”. 8ème Congrès Français de Mécanique. Nantes ( France ), September 1987Google Scholar
  6. 6.
    SERAUDIE A., MIGNOSI A., DOR J.B. and PAYRY M.J. Etude d’un écoulement instationnaire avec un système de vélocimétrie laser bi-composante dans le cas d’un phénomène de tremblement sur un profil RA16 de 180mm de corde dans la veine de la soufflerie T2 Rapport technique OA N° 31/3423 AYD (DERAT N° 12 /5017. 12 ), February 1988Google Scholar
  7. 7.
    DOR J.B. The cryogenic induction tunnel T2 at Toulouse AGARD/FDP Special Course on Cryogenic Technology for Wind Tunnel Testing. Report N°722. VKI, Rhode St Genèse (Belgium), April 1985Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. B. Dor
    • 1
    • 2
  • A. Mignosi
    • 1
    • 2
  • A. Seraudie
    • 1
    • 2
  • B. Benoit
    • 1
    • 2
  1. 1.Aerothermodynamics DepartmentONERA/CERTToulouseFrance
  2. 2.Avenue de la Division LeclercONERA OA 29ChatillonFrance

Personalised recommendations