Advertisement

Computations Relating to the Vortex Flow Experiment

  • S. M. Hitzel
  • B. Wagner
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

For slender wings the lift generated by vortex flows emerging from the leading edges may be essential for the aircraft performance and maneuverability of modem aircraft. The wing leading-edge sweep and shape control the vortex formation and therefore the aerodynamic characteristics. Depending on the sweep, vortex-breakdown as a limiter of concentrated vortices may destroy most of the vortices advantages at high angle-of-attack by severe changes in the aerodynamic forces and moments. In the early eighties Euler methods became available for predicting these effects in the transonic and supersonic speed ranges. The “International Vortex Flow Experiment” has been set up to provide experimental data for validating Euler-codes, since the previous data basis was very poor for high speeds. This paper contributes some Euler-results obtained by the solution of time-dependent Euler-equations with a finite-volume time-stepping approach for the sharp-edged delta wing of the Vortex Flow Experiment. Especially transonic effects are discussed including their influences on vortex-breakdown. Also some attention is given to the problem of high pressure losses in the vortex cores.

Keywords

Computational Fluid Dynamics Mach Number Vortex Core Vortex Flow Secondary Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Polhamus E.C., “Applying Slender Wing Benefits to Military Aircraft”, Journal of Aircraft, Volume 21, No. 8, August 1984Google Scholar
  2. [2]
    Peckham D.II., Atkinson S.A., “Preliminary Results of Low Speed Wind Tunnel Tests on a Gothic Wing of Aspect Ratio 1.0”, ARC CP 508, 1957Google Scholar
  3. [3]
    Hummel D., “Untersuchungen über das Aufplatzen der Wirbel an schlanken Deltaflügeln”, Zeitschrift für Flugwissenschaften, Verlag Friedrich Vieweg & Sohn, Braunschweig, Volume 5, 1965, pp 158 - 168Google Scholar
  4. [4]
    Wentz W.II., Kohlman D.L., “Wind-Tunnel Investigations of Vortex-Breakdown on Slender Sharp-Edged Wings”, NASA CR 98737, 1968Google Scholar
  5. [5]
    Hummel D., Redeker G., “Über den Einfluß des Aufplatzens der Wirbel auf die aerodynamischen Beiwerte von Deltaflügcln mit kleinem Seitenverhältnis beim Schiebeflug”, Jahrbuch 1967 der WGLR, 1967, pp 232 - 240Google Scholar
  6. [6]
    Hummel D., “On the Vortex Formation Over a Slender Wing at I,arge Angles of Incidence”, AGARD-FDP Symposium, Sandefjord 1975, AGARD-CPP-247, Iligh Angle of Attack Aerodynamics, 1978, pp 15-1 - 15-17Google Scholar
  7. [7]
    Wilson J.A., Lovell J.C., “Full-Scale Investigation of the Maximum Lift and Flow Characteristics of an Airplane Having Approximately Triangular Plan Form, NACA Research Memorandum No. L6K20, 1947Google Scholar
  8. [8]
    Hitzel S.M., Schmidt W., “Slender Wings with Leading-Edge Vortex Separation - A Challenge for Panel-Methods and Euler-Solvers”, Journal of Aircraft, Volume 21, 1984, pp 751-759, former AIAA 83-262Google Scholar
  9. [9]
    Johnson F.T., Lu P., Tinoco E.N., Epton M.A., “An Improved Panel Method for the Solution of Three-Dimensional Leading-Edge Vortex Flows”, Volume I - Theory Document, NASA CR-3278, 1980Google Scholar
  10. [10]
    Hclmholtz. H., “Ober Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen”, Journal für die reine und angewandte Mathematik, Band 55, (left 1, 1858, pp 25–55CrossRefGoogle Scholar
  11. [11]
    von Kàrmàn T., “The Theory of Lift”, Aerodynamics, McGraw-1 fill Paperback, Cornell University Press, 1954, pp 41Google Scholar
  12. [12]
    Werle H., “Flow Visualization Techniques for the Study of thigh Incidence Aerodynamics”, AGARD Lecture No. 121, 1982, pp 3-1-3-36Google Scholar
  13. [13]
    Malcolm G.N., Nelson R.C., “Comparison of Water and Wind Tunnel Flow Visualization Results on a Generic Fighter Configuration at High Angles of Attack”, AIAA paper 87-2423, Monterey, 1987Google Scholar
  14. [14]
    Erickson G.E., I’eake D.J., Del Frate J., Skow A.M., Malcolm G.N., “Water Facilities in Retrospect and Prospect. An Illuminating Tool For Vehicle Design”, AGARD-CP-413, Monterey, 1986, pp 1. 1-1. 28Google Scholar
  15. [15]
    Hitzel S.M., “Kompressiblität und kontrollierte Wirbelablösung, zwei Schritte zum modernen Dcltaflügler, DM-1 und Nachfolger”, unpublished, 1988Google Scholar
  16. [16]
    Campbell J.F., Osborn R.F., “Leading-Edge Vortex Research: Some Nonplanar Concepts and Current Challenges”, NASA Conference Publication 2416, Vortex Flow Aerodynamics, Volume I, 1985, pp 31–64Google Scholar
  17. [17]
    Schrader K.F., Reynolds G.A., Novak C.J., “Effects of Mach Number and Reynolds Number on Leading-Edge Vortices at Iligh Angle-of-Attack”, AIAA paper 88-0122, Reno, 1988Google Scholar
  18. [18]
    Brown S., “The Compressible Inviscid leading-Edge Vortex”, Journal of Fluid Mechanics, Volume 22, part I, 1965, pp 17–32Google Scholar
  19. [19]
    Hall M.G., “A Theory for the Core of a Leading-Edge Vortex”, RAE Report No. AEO 2644, 1960Google Scholar
  20. [20]
    Smith J.I1.13, “Numerical Solutions for the Three-D Cases - Delta Wings”, AGARD AR-21 I, Test Cases for Inviscid Flow Field Methods, 1985, pp 8-1–8-94Google Scholar
  21. [21]
    Joint US/European Vortex Flow Symposium in Stockholm, Sweden 1986, Proceedings of the International Vortex Flow Experiment on Euler Code Validation, Stockholm, Sweden, 1986,Google Scholar
  22. [22]
    Smith J.H.B, Overview of the Symposium, Proceedings of the International Vortex Flow Experiment on Euler Code Validation, Stockholm, Sweden, 1986, pp 357–361Google Scholar
  23. [23]
    Hitzel S.M., “Vortex Breakdown of Leading-Edge Vortices above Swept Wings - It’s Governing Terms in the Describing Equations”, DORNIER Note BF30-2576/84, 1984Google Scholar
  24. [24]
    Hitzel S.M., Wagner B., “Untersuchungen der dreidimensionalen Vonierkantenablósung an schlanken Flügeln mittels einer Euler-Zeitschrittmethode”, 4. DGLR-Symposium on separated flows, Göttingen, 10 - 12 October 1983Google Scholar
  25. [25]
    Kumar A., Das A., “Numerical Solutions of Flow Fields Around Delta Wings Using Euler Equation Method”, Proceedings of the International Vortex Flow Experiment on Euler Code Validation, Stockholm, Sweden, 1986, pp 175 - 186Google Scholar
  26. [26]
    Hitzel S.M., Wagner B., Leicher S., “Euler-Simulation of the Vortex Flow Experiment - A Critical Consideration”, Proceedings of the International Vortex Flow Experiment on Euler Code Validation, Stockholm, Sweden, 1986, pp 281–288Google Scholar
  27. [27]
    Müller B., Rizzi A, “Navier-Stokes Simulation of Laminar Flow Over the 65° Round Leading-Edge Delta Wing at M = 0.85 and a = 10°”, Proceedings of the International Vortex Flow Experiment on Euler Code Validation, Stockholm, Sweden, 1986, pp 269 - 280Google Scholar
  28. [28]
    Ricgcr H., Jameson A., “Solution of Steady Three-Dimensional Compressible Euler and NavierStokes Equations by an Implicit LU sheme”, AIAA paper 88-0619, Reno, 1988Google Scholar
  29. [29]
    Jaineson A., Schmidt W., Some Recent Development in Numerical Methods for Transonic Flows, Computational Methods in Applied Mechanics and Engineering 51, 1985, pp 467–493CrossRefADSGoogle Scholar
  30. [30]
    Leicher S., “Numerical Solution of Internal and External Inviscid and Viscous 3-D Flow Fields”, AGARI) Application of Computational Fluid Dynamics in Aeronautics 14, Aix-en-Provence France, 1986Google Scholar
  31. [31]
    Hitzel S.M., “Wing Vortex-Flows Up Into Vortex-Breakdown - A Numerical Simulation”, AIAA paper 88-2518, 6th. Applied Aerodynamics Conference, Williamsburg,Virgii,a,June 1988Google Scholar
  32. [32]
    Wagner B., Ilitzel, S.M., Schmatz M.A., Schwarz W., Ililgenstock A., Scherr S., “Status of CFD Validation on the Vortex Flow Experiment”, AGARD Fluid Dynamics Symposium on Validation of Computational Fluid Dynamics, Lisbon, Portugal, May 1988, pp 10. 1-10. 10Google Scholar
  33. [33]
    Boerson S.J., Elsenaar A., “l’est of the AFWAL, 65° Delta Wing at NLR: A Study of Vortex Flow Development between Mach = 0.4 and 4.0”, Proceedings of the International Vortex Flow Experiment on Euler Code Validation, Stockholm, Sweden, 1986, pp 23–36Google Scholar
  34. [34]
    Elsenaar A., Iljelmberg I.., Bütefisch K., Bannink W.J., “The International Vortex Flow Experiment”, AGARD Fluid Dynamics Symposium on Validation of Computational Fluid Dynamics, Lisbon, Portugal, May 1988Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • S. M. Hitzel
    • 1
  • B. Wagner
    • 1
  1. 1.Numerische StrömungsmechanikDORNIER GmbHFriedrichshafenGermany

Personalised recommendations