Viscous Transonic Flow in the Vicinity of a Corner Point

  • V. N. Diesperov
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The asymptotic analysis is done for the Navier-Stokes system for transonic flow at high Reynolds numbers near a vortex of a convex corner. The presence of a sonic line is assumed. A local potential Vaglio-Laurin flow type and a flow with a free stream line are considered as limiting ones. It was shown that the character of the flow in incident laminar boundary layers depends on the pressure gradient that is established from the solution of a global problem.


Corner Point External Flow Subsonic Flow Transonic Flow Viscous Sublayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Diesperov, V.N.: Uch. Zapiski TSAGI 13 (1982), No.2, 15 (in Russian). 4 (1984), p. 275.Google Scholar
  2. [2]
    Diesperov, V.N.: Transonic Flows over Profile Break Points: Computing Center, Akad. Nauk SSSR 1987 (in Russian).Google Scholar
  3. [3]
    Vaglio-Laurin, R.: Fluid Mech. 9 (1960), No. 1, 81.CrossRefMATHADSMathSciNetGoogle Scholar
  4. [4]
    Fal’kovich, S.V., Cernov, I.A.: Prikl. Math. Mekh. 28 (1964) 280 (in Russian).MathSciNetGoogle Scholar
  5. [5]
    Diesperov, V.N.: Prikl. Mat. Mekh. 45 (1981) 652.MathSciNetGoogle Scholar
  6. [6]
    Lifshitz, Yu.B., Shifrin, E.G.: lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza (1971), No. 2, 67 (in Russian).Google Scholar
  7. [7]
    General Theory of High Speed Aerodynamics. Sears, W.R. (ed.). Princeton: Princeton University Press 1954.Google Scholar
  8. [8]
    Bryson, A.E.: N.A.C.A. Rep. (1952), No., 1094.Google Scholar
  9. [9]
    Ackerberg, R.C.: Fluid Mech. 44 (1970), No. 2, 211.CrossRefMATHADSMathSciNetGoogle Scholar
  10. [10]
    Sychev, V.V. (ed.), Ruban, A.I., Sychev, Vic. V., Korolev, G.H.: Asymptotic Theory of Separated Flows. Moscow: Nauka 1987 (in Russian).Google Scholar
  11. [11]
    Ryzhov, O.S.: Proc. IUTAM Symp. on Boundary-Layer Separation, London 1986. Berlin: Springer 1987.Google Scholar
  12. [12]
    Bogdanova, E.V., Ryzhov, O.S.: Prikl. Mat. Mekh. 50 (1986) 394.Google Scholar
  13. [13]
    Mc.Leod, J.B.: Quart. J. Math. 23 (1972), No. 89, 63.Google Scholar
  14. [14]
    Diesperov, V.N.: Prikl. Mat. Mekh: 50 (1986) 403.MathSciNetGoogle Scholar
  15. [15]
    Boichenko, V.S., Lifshitz, Yu.B.: Uch. Zapiski TSAGI 7 (1976), No. 2, 8 (in Russian).Google Scholar
  16. [16]
    Esin, A.I., Chernov, I.A.: Prikl. Mat. Mekh. 41 (1977) 292.Google Scholar
  17. [17]
    Diesperov, V.N.: lzv. Akad. Nauk SSSR, Mekh. Zidk Gaza (1983), No. 5, 130 (in Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • V. N. Diesperov
    • 1
  1. 1.Computing CenterUSSR Academy of SciencesMoscowUSSR

Personalised recommendations