Transonic Degeneracy in Systems of Conservation Laws

  • J.-P. Guiraud
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


We examine the way in which the system of two equations for two unknown functions of two variables which occurs in transonic aerodynamics may be derived asymptotically for systems of conservation laws. Some already known applications are resumed in a unified way.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Von Kârmân, T. The similarity law for transonic flow. Jal Math.Phys. 26 (1947) 182–190.MATHGoogle Scholar
  2. [2]
    Guiraud, J.-P. Acoustique géométrique, bruit balistique des avions supersoniques et focalisation. Jal. de Mécanique 4 (1965) 215–267.Google Scholar
  3. [3]
    Obermeier, F. Some comments on sonic boom focussing. Z.A.M.M. 58 (1975) T295–T297.Google Scholar
  4. [4]
    Eremenko, V.A. On the structure of the velocity field in the vicinity of a caustic. P.M.M. 41 (1977) 1147–1151.MathSciNetGoogle Scholar
  5. [5]
    Seebass, R., Murman, E. and Krupp, J.A. Finite difference calculation of a discontinuous signal at a caustic. Third conference on sonic boom research; NASA SP 255.Google Scholar
  6. [6]
    Pechuzal, G. and , J. Supersonic-transonic flow generated by a thin airfoil in a stratified atmosphere. SIAM Jal. Appl. Math. 38 (1977) 8–33.MathSciNetGoogle Scholar
  7. [7]
    Fung, Y. Shock wave formation at a caustic. SIAM Jal. Appl. Math. 39 (1980) 335–371.ADSMathSciNetGoogle Scholar
  8. [8]
    Cramer, M.S. The focussing of weak shock waves at an axisymmetric arête; J.F.M. 110 (1981) 249–253.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J.-P. Guiraud
    • 1
    • 2
  1. 1.Laboratoire de Modélisation en Mécanique (CNRS N° 2990)Université P&M. CurieParis Cedex 05France
  2. 2.ONERA Direction de l’AérodynamiqueChatillon CedexFrance

Personalised recommendations