Modeling the Dynamics of a Complete Vehicle with Nonlinear Wheel Suspension Kinematics and Elastic Hinges

  • Manfred Hiller
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


By a geometrical approach, the complex equations of motion of a passenger car which represents a complex spatial multiloop multibody system can be stated analytically in minimum coordinates. In particular, the nonlinear constraint equations arising from the closed loops can be stated explicitly in recursive form. In addition, significant elasticities of the vehicle are considered.

The corresponding simulation program requires a minimum number of operations. The program is applied for extended simulation runs. It has to serve as a basis for the control design of anti-block-systems (ABS), drive-slide control systems (ASR) and active suspension systems.


Multi Body System Tire Model Rear Suspension Torsion Beam Complete Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anantharaman, M.P.; Hiller, M.: Systematische Strukturierung der Bindungsgleichungen mehrschleifiger Mechanismen. ZAMM 69, 1989, to appear.Google Scholar
  2. [2]
    Banholzer, D.: The design of the running gear of light passenger cars for comfort and safety. Int. J. of Vehicle Design, 129–146, 1986. Special issue on Vehicle Safety.Google Scholar
  3. [3]
    Cronin, D.L.: McPherson strut kinematics. Mechanism and Machine Theory, 16:631–644, 1981.CrossRefGoogle Scholar
  4. [4]
    Frik, S.; Hiller, M.: Kinematik und Dynamik einer McPherson-Vorderradauf-hängung mit elastischem liinterem Querlenkerlager. ZAMM 69, 1989, to appear.Google Scholar
  5. [5]
    Hiller, M.; Keeskemethy, A.: A computer-oriented approach for the automatic generation and solution of the equations of motion of complex mechanisms. In Proc. of the 7th World Congress, The Theory of Machines and Mechanisms, pages 425–430, 1987.Google Scholar
  6. [6]
    Hiller, M.; Keeskemethy, A.; Woerule, C.: A loop-based kinematical analysis of spatial mechanisms. 1986. ASME Paper 86-DET-184.Google Scholar
  7. [7]
    Hiller, M.; Woernle, C.: A systematic approach for solving the inverse kinematic problem of robot manipulators. In Proc. of the 7th World Congress, The Theory of Machines and Mechanisms, pages 1135–1139, 1987.Google Scholar
  8. [8]
    Pacejka, H.B.: Modelling of the Pneumatic Tire and its Impact, on Vehicle Dynamic Behaviour. Lecture V 2.03, Lecture Series V, Carl Cranz Gesellschaft (CCG), Oberpfaffenhofen, 1985.Google Scholar
  9. [9]
    Schieschke, R.; Gnadler, R.: Modellbildung und Simulation von Reifeneigenschaf-ten. VDI-Bericht Nr.G50, 1987.Google Scholar
  10. [10]
    Schmidt, A.; Wolz, U. Nichtlineare räumliche Kinematik von Radaufhängungen-kinematische und dynamische Untersuchungen mit dem Programmsystem MESA VERDE. Automobilindustrie, 6:639–644, 1987.Google Scholar
  11. [11]
    Schnelle, K.-P.: Die Kinematik des Rad-Straβe-Kontakts. ZAMM 69, 1989, to appear.Google Scholar
  12. [12]
    Shampine, L.F.; Gordon, M.K.: Computer-Lösung gewöhnlicher Differentialglei-chungen. Vieweg Verlag, Braunschweig, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Manfred Hiller
    • 1
  1. 1.Fachgebiet MechanikUniversität DuisburgDuisburgGermany

Personalised recommendations