Expert Systems: The State of the Art

  • M. J. Rijckaert
  • V. Debroey
  • W. Bogaerts
Part of the NATO ASI Series book series (volume 48)

Abstract

“An expert system is a computer program that embodies expertise about a particular domain, and can use symbolic reasoning techniques to solve problems in this domain; problems that would need the assistance of a human expert in the real world. An expert system should also be able to explain its conclusions.” This definition embraces the four main characteristics that distinguish an expert system from a “conventional” program (Waterman 1986):
  • Expertise

  • Symbolic reasoning

  • Depth

  • Self-knowledge

Keywords

Assure Nism Doyle Ambi Subsys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Alty, M. J. Coombs.(1984) Expert Systems: Concepts and Examples. NCC Publications.Google Scholar
  2. F. Arlabosse (1985) Reasoning with time and about time: Some aspects of temporal logic. In: Expert Systems and Optimisation in Process Control, Unicom Seminars Ltd., 152–157.Google Scholar
  3. J.F. Baldwin. (1987) An uncertainty calculus for expert systems. In: Approximate reasoning in intelligent systems, decision and control, ed. by E. Sanchez and L. Zadeh, Pergamon Press, 33–54.Google Scholar
  4. D. C. Berry, D. E. Broadbent. (1987) Expert Systems and the man-machine interface. Part two: the user interface. Expert Systems, February 1987. Vol. 4 No. 1 18–27.Google Scholar
  5. R. J. Brachman, S. Amarel, C. Engelman, R. S. Engelmore, E. A. Feigenbaum, D. E. Wilkins. (1983) What are Expert Systems?. Chapter 2 in (Hayes-Roth 1983).Google Scholar
  6. R. J. Brachman, H. J. Levesque. (1985) Readings in Knowledge Representation, Morgan Kaufmann.Google Scholar
  7. L. Brownston, R. Farell, E. Kant, N. Martin. (1985) Programming Expert Systems in OPS5, Addison-Wesley.Google Scholar
  8. B. G. Buchanan, D. Barstow, R. Bechtal, J. Bennett, W. Clancey, C. Kulowski, T. Mitchell, D. A. Waterman. (1983) Constructing an Expert System, Chapter 5 in (Hayes-Roth 1983).Google Scholar
  9. B. G. Buchanan, E. H. Shortliffe. (1984) Rule-Based Expert Systems: the MYCIN Experiments of the Stanford Heuristic Programming Project, Addison-WesleyGoogle Scholar
  10. T. Bylander, B. Chandrasekaran. (1985) Qualitative Reasoning about Physical Systems, In (S1GART 1985).Google Scholar
  11. B. Chandrasekaran, S. Mittal. (1984) Deep versus compiled knowledge approaches to diagnostic problem-solving, In: Developments in Expert Systems, ed. M. J. Coombs, Academic Press, 23–34.Google Scholar
  12. W. E. Clocksin, C. S. Mellish. (1981) Programming in Prolog, Springer-VerlagGoogle Scholar
  13. R. Davis, B. Buchanan, E. Shortliffe. (1977) Production Rules as a Representation for a Knowledge-Based Consultation Program, Artificial Intelligence 8(1), 15–45.CrossRefMATHGoogle Scholar
  14. R. Davis. (1984) Resoning frum first principles, In: Developments in Expert Systems, ed. M. J. Coombs, Academic Press.Google Scholar
  15. J. de Kleer, C. Williams. (1987) Diagnosing Multiple Faults, Artificial Intelligence 32, 97–130.CrossRefMATHGoogle Scholar
  16. R. O. Duda, J. Gaschnig, P. Hart. (1979) Model design in the PROSPECTOR consultant program for mineral exploration, In: Expert Systems in tyhe Microelectronic Age, ed. D. Mitchie, Edinburgh University Press.Google Scholar
  17. C. L. Forgy, J. Mc Dermott. (1977) OPS, A Domain-Independent Production System Language, In: Proceedings of the 5th International Joint Conference on Artificial Intelligence MIT, 973–939.Google Scholar
  18. G. Guida. (1985) Reasoning about physical systems: shallow versus deep models, In: Expert Systems and Optimisation in Process Control, Unicom Seminars Ltd. 82–106.Google Scholar
  19. F. Hayes-Roth, D. A. Waterman, D. B. Lenat. (1983) Building Expert Systems, Addison-Wesley.Google Scholar
  20. F. Hayes-Roth. (1985) A Blackboard Architecture for Control, Artificial Intelligence 26, 251–321.CrossRefGoogle Scholar
  21. IntelliCorp. (1986a) KEE Software Development System User’s Manual, Intel-licorp Document number 3.0-U-1.Google Scholar
  22. IntelliCorp. (1986b) KEE Software Development Rulesystem3 Reference Manual, Intellicorp Document number 3.0-RR-1.Google Scholar
  23. J.L. Kolodner. (1984) Towards an understanding of the role od experience in the evolution from novice to expert, In: Developments in Expert Systems, ed. M. J. Coombs, Academic Press, 95–116.Google Scholar
  24. D. Lenat, R. Davis, J. Doyle, M. Genesereth, I. Goldstein, H. Schrobe. (1983) Reasoning about Reasoning, Chapter 7 in (Hayes-Roth 1983).Google Scholar
  25. J. McDermott. (1982) RI: A Rule-Based Configurer of Computer Systems, Artificial Intelligence 19, 39–88.CrossRefGoogle Scholar
  26. M. Minsky. (1985) A Framework for Representing Knowledge, In: Mind Design, ed. J. Haugeland, The MIT Press (1981) (reprinted as Chapter 12 in (Brachman (1985)).Google Scholar
  27. R. L. Moore, L. B. Hawkinson, C. G. Knickerbocker, L. M. Churchman. (1984) A real-time expert system for process control, 1st Conf. on Artificial Intelligence Applications IEEE, 569–576.Google Scholar
  28. L Moskowitz. (1986) Rule-Based Programming, Byte November, 217–224.Google Scholar
  29. R. C. Muller (1986) New Directions in Expert Systems, In: Knowledge-Based Systems’ 86, Online Publications, 325–333.Google Scholar
  30. C.V. Negoita. (1985) Expert Systems and Fuzzy Systems, Benjamin Cummings Publ. Co.Google Scholar
  31. G. Pass. (1986) Consistent Evaluation of Uncertain Reasoning Systems, 6th Int. Workshop on Expert Systems and their Applications, Avignon, 73–94.Google Scholar
  32. S. Puuronen. (1987) A Tabular Rule-Checking Method, 7th Int. Workshop on Expert Systems and their Applications, Avignon, 257–268.Google Scholar
  33. M. R. Quillian. (1967) Word Concepts: A Theory and Simulation of some Basic Semantic Capabilities, Behavioral Science 12, 410–430(reprinted as Chapter 6 in (Brachman (1985))).CrossRefGoogle Scholar
  34. J. R. Quinlan. (1982) Semi-automous acquisition of pattern-based knowledge, In: Introductory Readings in Expert Systems, ed D. Mitchie, Gordon and Breach.Google Scholar
  35. M.-C. Rousset. (1987) Sur la Validite des Bases de Connaissances: le systeme COVADIS, 7th Int. Workshop on Expert Systems and their Applications, Avignon, 269–282.Google Scholar
  36. V. Sembugamoorthy, B. Chandrasekaran. (1985) Functional Representation of Devices as Deep Models, In: (SIGART 1985).Google Scholar
  37. G. Shafer. (1976) A mathematical theory of evidence, Princeton University Press.Google Scholar
  38. E. H. Shortliffe. (1976) Computer-Based Medical Consultations: MYCIN, American Elsevier.Google Scholar
  39. SIGART (1985) Special Section on Reasoning about structure, Behavior and Function, eds. B. Chandrasekaran, R. Milne, SIGART Newsletter July, 4–55.Google Scholar
  40. G. Soula, X. Thirion, J.-M. Guliana, I. Navez, B. Vialettes, J.-L. San Marco, V. Ledoray. (1987) Une Validation Multicentrique du Systeme Expert PROTIS, 7th Int. Workshop on Expert Systems and their Applications, Avignon, 239–255.Google Scholar
  41. J. T. St Johanser, R. M. Harbidge. (1986) Validating expert systems: problems and solutions in practice, In: Knowledge-Based Systems’ 86, Online Publications, 215–229.Google Scholar
  42. M. Suwa, A. C. Scott, E. H. Shortliffe. (1984) Completeness and Consistency in a Rule-Based System, In: (Buchanan 1984), 653–665.Google Scholar
  43. S. N. Talukdar, E. Cardozo, L. Leao, R. Benares, R. Joobbani. (1986) A system for Distributed Problem Solving. In: Coupling Symbolic and Numerical Computing in Expert Systems, ed. J. S. Kowalik, Elsevier, 115–122.Google Scholar
  44. D. A. Waterman (1986) A Guide to Expert Systems, Addison-Wesley.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. J. Rijckaert
    • 1
  • V. Debroey
    • 1
  • W. Bogaerts
    • 1
  1. 1.Katholieke Universiteit LeuvenBelgium

Personalised recommendations