Constructing 3D Objects from 2D Information

  • W. Straßer
Conference paper
Part of the NATO ASI Series book series (volume 40)


The construction of 3D objects from 2D information is a discipline of computer aided design (CAD) as well as image analysis. Both use, in most cases, interactive computer graphics as a tool. The interrelation between graphics, image processing and image analysis can be clarified with Fig. 1.


Image Space Cluster Point Data Word Hough Space Infinite Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BES85.
    Besl, P.J., Jain, R.C., “Three-dimensional object recognition”, ACM Computing Surveys, Vol.17, No. 1, March ’85Google Scholar
  2. BIL86.
    Biland, H.P., Wahl, F.M., “Understanding Hough space for polyhedral scene decomposition”, IBM Research Report, RZ 1458, (1986)Google Scholar
  3. BIL86a.
    Biland, H.P., Wahl, F.M., “Cluster estimation for image analysis and object recognition”, IBM Tech. disci. Bull., Vol. 28, No. 8, (1986), p. 3667 f.Google Scholar
  4. BRA82.
    Brady, M., “Computational approaches to image understanding”, ACM Computing Surveys, Vol. 14, No. 1, March ’82Google Scholar
  5. CHI86.
    Chin, R.T., Dyer, C.R., “Model-based recognition in robot vision”, ACM Computing Surveys, Vol. 18, No. 1, March ’86Google Scholar
  6. ENC86.
    Encarnacao, J., Straßer, W., “Computer Graphics-Gerätetechnik, Programmierung und Anwendung graphischer Systeme”, Oldenbourg-Verlag, 1986Google Scholar
  7. ENG86.
    Engelbrecht, J.R., Wahl, F.M., “Polyhedral object recognition using Hough-space features”, IBM Research Report, RZ 1486, 1986Google Scholar
  8. FUC87.
    Fuchs, H. et al, “Developing pixel-planes”,Proc. Conference on advanced research on VLSI, M.I.T., 1982Google Scholar
  9. GEM82.
    Gemballa, R., Lindner, R., “The multiple-write bus technique”, IEEE computer Graphics Applications, September ’82Google Scholar
  10. GRE82.
    Greenberg, D., “The computer image”, Addison-Wesley Publishing Co., 1982Google Scholar
  11. HOR77.
    Horn, B.K.P., “Understanding image intensities”, Artificial Intelligence, Vol. 8, NO. 2, pp 201–231Google Scholar
  12. HOU62.
    Hough, P.V.C., Arbor, A., “Method and means for recognition of complex patterns”, US Patent, No. 3, 069, 654, (1962)Google Scholar
  13. JAC85.
    Jackél, D., “The graphics PARCUM system”, CGF, 4 (1985) , pp. 21–35Google Scholar
  14. JAC87.
    Jackèl, D., “Eine Rechnerarchitektur zur Visualisierung und Verarbeitung von ’cellular space”-Repräsentationen, Dissertaiton, TU Berlin, 1987Google Scholar
  15. KAI86.
    Kaining, G., Zesheng, T., Jiaguang, S., “Reconstruction of 3D objects from orthographic projections”, CGF, Vol. 5, No. 4, December ’86Google Scholar
  16. LI85.
    Li, H., Lavin, M.A., LeMaster, R.J., “Fast Hough Transform”, IBM Research Report, RC 11080, 1985Google Scholar
  17. MAC77.
    Mackworth, A., “Consistency in constraint propagation”, Artificial Intelligence 8:1, 99–118, 1977CrossRefMATHMathSciNetGoogle Scholar
  18. MAZ86.
    Mazzola, G., Krömker, D., Hofmann, G.R., “Raster-bild-Bildraster”, Springer-Verlag, 1986Google Scholar
  19. NAT85.
    Natterer, F., “Numerik des Radonschen Problems”, Jber. d. Dt. Math.-Verein, 87 (1985), 108–126MATHMathSciNetGoogle Scholar
  20. PUL86.
    Pulleyblank, R.W., Kapenga, J., “A VLSI chip for ray-tracing bicubic patches”, in Straßer, W.(ed), Advances in Graphics Hardware I, Springer-VerlagGoogle Scholar
  21. SCH87.
    Schneider, B.-O., “Ray Tracing Rational B-Spline-Patches in VLSI”, in F.Kuijk, W. Straßer (eds.), Advances in Comuter Graphics Hardware II, Springer, 1987, to appearGoogle Scholar
  22. SHE84.
    Sher, D., Tevanian, A., “The vote tallying chip: a custom integrated circuit”, University of Rochester, TR 144, November ’84Google Scholar
  23. STR86.
    Strasser, W., “A VLSI-oriented architecture for parallel processing image generation”, in Reijns, Barton (ed.) Highly parallel computers, Elsevier Science Publications, 1987Google Scholar
  24. ULL76.
    Ullmann, J.R., “An algorithm for subgraph isomorphism”, J. ACM, Vol. 15, No. 1, 1976CrossRefMathSciNetGoogle Scholar
  25. WAH86.
    Wahl, F.M., Biland, H.P., “Decomposition of polyhedral scenes in Hough space”, Proc. 8th International Conference on pattern recognition, Paris, 1986Google Scholar
  26. WES81.
    Wesley, M.A., Markowsky, G., “Fleshing out projections”, IBM J. Res. Develop., Vol. 25, No. 6, November ’81Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • W. Straßer
    • 1
  1. 1.Wilhelm-Schickard-Institut für Informatik Graphisch-Interaktive SystemeUniversität TübingenTübingenGermany

Personalised recommendations