Skip to main content
Book cover

Teeth pp 173–247Cite as

Structure and Ultrastructure of Dentine

  • Chapter

Part of the book series: Handbook of Microscopic Anatomy ((1668,volume 5 / 6))

Abstract

As mentioned by BAUME (1980) in his excellent review of pulp and dentine, the histological study of dentine began when Anthonie Van LEUWENHOEK (1675), the inventor of the microscope, first noted the tubular structure in this tissue. LEUWENHOEK’S drawings of tooth sections failed to show a distinction between dentine and enamel, however, and he reported to the Royal Society of London “... that the whole tooth was made up of very small straight and transparent pipes. Six or seven hundred of these pipes put together, I judge, exceed not the thickness of one hair of man’s beard”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andresen V (1898) Die Querstreifung des Dentins. Dtsch Monatschr Zahnheilk 16:386–389

    Google Scholar 

  • Armstrong WD, Brekhus PJ (1937) Chemical constitution of enamel and dentine. I. Principal components. J Biol Chem 120:677–687

    CAS  Google Scholar 

  • Ashida O (1983) Hypothalamic nuclei related to circadian rhythmicity in dentinogenesis of the rat incisor. Bull Kanagawa Dent Coll 11:15–27

    Google Scholar 

  • Athenstaedt H (1971) Pyroelectric and piezo-electric behavior of human dental hard tissues. Arch Oral Biol 16:495–501

    PubMed  CAS  Google Scholar 

  • Aubin JE (1985) New immunocytochemical approaches to studying the odontoblast. J Dent Res 61:515–522 (special issue)

    Google Scholar 

  • Baker KL, Storey E (1970) Tetracycline-induced tooth changes. 3. Incidence in extracted first permanent molar teeth. Med J Aust 1:109–113

    PubMed  CAS  Google Scholar 

  • Baud CA, Held AJ (1956) Silberfarbung, Rontgenmikrographie und Mineralgehalt der Zahnhartgewebe. Dtsch Zahnarztl Z 11:309–314

    Google Scholar 

  • Baume LJ (1980) The biology of pulp and dentine: a historic, terminologic, taxonomic, histological, biochemical, embryonic and clinical survey. Monographs in oral science. Karger, Basel

    Google Scholar 

  • Beersten W, Everts V, Hoff van den A (1974) Fine structure of fibroblasts in the periodontal ligament of the rat incisor and their role in tooth eruption. Arch Oral Biol 19:1087–1098

    Google Scholar 

  • Bergman G, Engfeldt B (1955) Studies on mineralized dental tissues. Acta Odontol Scand 13:1–7

    PubMed  CAS  Google Scholar 

  • Bernick S (1969) Histochemieal study of dentin in parathyroidectomized rats. J Dent Res 48:1251–1257

    PubMed  CAS  Google Scholar 

  • Bernick S, Baker RF, Rutherford RL, Warren O (1952) Electron microscopy of enamel and dentin. J Am Dent Assoc 45:689–696

    PubMed  CAS  Google Scholar 

  • Berthet-Colominas C, Miller A, White SW (1979) Structural study of the calcifying collagen in turkey leg tendons. J Mol Biol 134:431–445

    PubMed  CAS  Google Scholar 

  • Beust TB (1934) Demonstration of sclerosis of dentin in tooth maturation and caries. Dental Cosmos 76:305–317

    Google Scholar 

  • Bishop MA (1985) Evidence for tight junctions between odontoblasts in the rat incisor. Cell Tissue Res 239:137–140

    PubMed  CAS  Google Scholar 

  • Blackwood HJJ (1987) Intermediate cementum. Br Dent J 102:345–350

    Google Scholar 

  • Blake GC (1958) The peritubular translucent zones in human dentine. Br Dent J 104:57–64

    Google Scholar 

  • Bödecker CF, Applebaum E (1931) Metabolism of the dentin. Its relation to dental caries and to the treatment of sensitive teeth. Dent Cosmos 73:995–1009

    Google Scholar 

  • Bödecker CF, Lefkowitz W (1946) Further observations on the vital staining of dentin and enamel. J Dent Res 25:387–396

    PubMed  Google Scholar 

  • Boyde A, Jones SJ (1983) Backscattered electron imaging of dental tissues. Anat Embryol (Berl) 168:211–226

    CAS  Google Scholar 

  • Braden M (1976) Biophysics of the tooth. In: Kawamura Y (ed) Frontiers of oral physiology, vol II. Karger, Basel, pp 1–37

    Google Scholar 

  • Bradford EW (1950) An investigation in the structure of the pulpo-dentinal junction. Br Dent J 88:55–58

    Google Scholar 

  • Bradford EW (1955) The interpretation of calcified sections of human dentine. Br Dent J 98:153–159

    Google Scholar 

  • Bradford EW (1967) Microanatomy and histochemistry of dentine. In: Miles AEW (ed) Structural and chemical organization of teeth, vol II. Academic, New York, pp 3–34

    Google Scholar 

  • Brännström M, Garberoglio AR (1972) The dentinal tubules and the odontoblast process. A scanning electron microscopic study, Acta Odontal Scand 30:291–311

    Google Scholar 

  • Brearley LJ, Stragis AA, Storey E (1968) Tetracycline-induced tooth changes. 1. Prevalence in preschool children. Med J Aust 2:653–658

    Google Scholar 

  • Butler WT (1984a) Dentin collagen: chemical structure and role in mineralization. In: Linde A (ed) Dentin and dentinogenesis, vol II. CRC Press, Boca Raton, pp 37–53

    Google Scholar 

  • Butler WT (1984b) Matrix molecules of bone and dentine. Coll Relat Res 4:297–307

    PubMed  CAS  Google Scholar 

  • Calle A (1985) Intercellular junctions between human odontoblasts. A freeze-fracture study after demineralization. Acta Anat (Basel) 122:138–144

    CAS  Google Scholar 

  • Coffey CT, Ingram MJ, Bjoarndal AM (1970) Analysis of human dentinal fluid. Oral Surg 30:835–837

    PubMed  CAS  Google Scholar 

  • Connor NS, Aubin JE, Melcher AH (1984) The distribution of fibronectin in rat tooth and periodontal tissues: an immunofluorescence study using a monoclonal antibody. J Histochem Cytochem 32:565–572

    PubMed  CAS  Google Scholar 

  • Cournil I, Leblond CP, Pomponio J, Hand AR, Sederlof L, Martin GR (1979) Immunohistochemical localization of procollagens. I. Light microscopic distribution of procollagen I, III and IV antigenicity in the rat incisor tooth by the indirect peroxidase-antiperoxidase method. J Histochem Cytochem 27:1059–1069

    PubMed  CAS  Google Scholar 

  • Crooks PV, O’Reilly CB, Owens PDA (1983) Microscopy of the dentin of enamel-free areas of rat molar teeth. Arch Oral Biol 28:167–176

    PubMed  CAS  Google Scholar 

  • Cuvier G (1805) Leçons d’anatomie comparee. Dix septième leçon des dents. Crochars et Fantin, Paris 3:103–200

    Google Scholar 

  • Czermak J (1850) Beitrage zur mikroskopischen Anatomie der Zahne. Z Zool 2:297–312

    Google Scholar 

  • Dreyfuss F, Frank RM, Gutmann B (1964) La sclerose dentinaire. Bull Group Int Rech Sci Stomatol Odontol 7:207–229

    Google Scholar 

  • Driessens FCM (1982) Mineral aspects of dentistry. In: Myers HM (ed) Monographs in oral science, vol 10. Karger, Basel, pp 1–215

    Google Scholar 

  • Ebner V von (1906) Uber die Entwicklung der leimgebenden Fibrillen insbesondere im Zahnbein. Sitzung der Akad Wiss Wien Math-naturwiss 115:281–346

    Google Scholar 

  • Eda S, Takuma S (1965) Microstructure of the peritubular matrix in horse dentin. Bull Tokyo Dent Coll 6:1–14

    Google Scholar 

  • Egan J, Tring FC, Prout RES (1972) Tetracycline deposits in children’s teeth in relation to atmospheric pollution. Brit J Prev Soc Med 26:259–262

    CAS  Google Scholar 

  • Engström A (1966) Apatite-collagen organization in calcified tendon. Exp Cell Res 43:241–245

    PubMed  Google Scholar 

  • Farquhar MG, Palade GE (1963) Junctional complexes of various epithelia. J Cell Biol 17:375–412

    PubMed  CAS  Google Scholar 

  • Fearnhead RW (1957) Histological evidence for the innervation of human dentine. J Anat 91:267–277

    PubMed  CAS  Google Scholar 

  • Fiore-Donno G, Baume LJ (1966) Etude histochimique de la dentinogenese humaine. Helv Odont Acta [suppl 4] 10:141–195

    CAS  Google Scholar 

  • Fish WE (1927) The circulation of lymph in dentin and enamel. J Am Dent Assoc 14:804–817

    Google Scholar 

  • Fish WE (1932) An experimental investigation of enamel, dentine and the dental pulp. 1st edn. Bale and Danielson, London

    Google Scholar 

  • Frank RM (1952) Donnees recentes sur 1’infrastructure de la dent fournies par les techniques de microscopie electronique. Arch Stomatol 7:127–140

    PubMed  CAS  Google Scholar 

  • Frank RM (1957) Microscopie et diffraction electronique des elements cristallins de la dent. Odont Rev 8:134–142

    Google Scholar 

  • Frank RM (1959) Electron microscopy of undecalcified sections of human adult dentine. Arch Oral Biol 1:29–32

    PubMed  CAS  Google Scholar 

  • Frank RM (1966a) Etude au microscope electronique de l’odontoblaste et du canalicule dentinaire humain. Arch Oral Biol 11:179–199

    PubMed  CAS  Google Scholar 

  • Frank RM (1966b) Ultrastructure of human dentine. In: Fleisch H, Blackwood JHH, Owen M (eds) Third Europ Symp Calcified Tissues. Springer, Berlin, pp 259–271

    Google Scholar 

  • Frank RM (1968a) Ultrastructural relationship between the odontoblast, its process and the nerve fibre. In: Symons NBB (ed) Dentine and pulp: their structure and reactions. Livingstone, London, pp 115–145

    Google Scholar 

  • Frank RM (1968b) Attachment sites between the odontoblast process and the intradentinal nerve fibre. Arch Oral Biol 13:833–834

    PubMed  CAS  Google Scholar 

  • Frank RM (1970) Etude autoradiographique de la dentinogenese en microscopie electronique a l’aide de la proline tritiee chez le chat. Arch Oral Biol 15:583–596

    PubMed  CAS  Google Scholar 

  • Frank RM (1979) Electron microscope autoradiography of calcified tissues. Int Rev Cytol 56:183–253

    PubMed  CAS  Google Scholar 

  • Frank RM, Voegel JC (1978) Dissolution mechanisms of the apatite crystals during dental caries and bone resorption. In: Berlin RD, Herrmann H, Lepow IH, Tanzer JM (eds) Molecular basis of biological degrative processes. Academic, New York, pp 277–311

    Google Scholar 

  • Frank RM, Voegel JC (1980) Ultrastructure of the human odontoblast process and is mineralization during dental caries. Caries Res 14:367–380

    PubMed  CAS  Google Scholar 

  • Frank RM, Wolff F, Gutmann B (1964) Microscopie électronique de la carie au niveau de la dentine humaine. Arch Oral Biol 9:163–179

    PubMed  CAS  Google Scholar 

  • Frank RM, Sauvage C, Frank P (1972) Morphological basis of dental sensitivity. Int Dent J 22:1–19

    PubMed  CAS  Google Scholar 

  • Frank RM, Cimasoni G, Tsamouranis A, Matter J, Fiore-Donno G (1977) Collagen resorption by fibroblasts in human gingiva. J Biol Buccale 5:343–351

    PubMed  CAS  Google Scholar 

  • Fromme HG, Riedel H (1970) Messungen über die Weite der Dentinkanalchen an nichtentmineralisierten bleibenden Zähnen und Milchzähnen. Dtsch Zahnärztl Z 25:401–405

    PubMed  CAS  Google Scholar 

  • Furseth R (1974) The structure of peripheral root dentin in young human premolars. Scand J Dent Res 82:557–561

    PubMed  CAS  Google Scholar 

  • Garant PR (1972) The organization of microtubules within rat odontoblast processes revealed by perfusion fixation with glutaraldehyde. Arch Oral Biol 17:1047–1058

    PubMed  CAS  Google Scholar 

  • Garant PR (1976) Collagen resorption by fibroblasts. A theory of fibroblastic maintenance of periodontal ligament. J Periodont Res 47:380–390

    CAS  Google Scholar 

  • Garant PR (1978) Microanatomy of the oral mineralized tissues. In: Shaw JH, Sweeney EA, Cappuccino CC, Meller SB (eds) Textbook of oral biology, vol 5, 1st edn. Saunders, Philadelphia, pp 181–225

    Google Scholar 

  • Garant PR, Szabo G, Nalbandian J (1968) The fine structure of mouse odontoblasts. Arch Oral Biol 13:857–876

    PubMed  CAS  Google Scholar 

  • Garberoglio R, Brännström H (1976) Scanning electron microscopic investigations of human dentinal tubules. Arch Oral Biol 21:355–362

    PubMed  CAS  Google Scholar 

  • Gerould CH (1944) Ultramicrostructure of human tooth as revealed by the electron microscope. J Dental Res 23:239–245

    Google Scholar 

  • Glimcher MJ (1982) On the form and function of bone: from molecules to organs. Wolffs law revisited 1981. In: Veis A (ed) The chemistry and biology of mineralized connective tissue. Elsevier, North Holland, New York, pp 617–613

    Google Scholar 

  • Goldberg M (1983) “Proteoglycans de la dentine et de l’émail: interrelations avec les composants matriciels. Etudes histochimiques et ultrastructurales”; Thése Dr d’état Sciences Nat, Université Paris 6

    Google Scholar 

  • Goldberg M, Escaig F (1981) Odontoblastes: collagéne dans la prédentine et la dentine de l’incisive de rat: étude par cryofracture. Biol Cell 40:203–216

    Google Scholar 

  • Goldberg M, Septier D (1983) Electron microscopic visualization of proteoglycans in rat incisor predentine and dentine with cuprolinic blue. Arch Oral Biol 38:79–83

    Google Scholar 

  • Goldberg M, Genotelle-Septier D, Weill R (1978) Glycoprotéins et protéoglycans dans la matrice prédentinaire et dentinaire chez le rat: étude ultrastructurale. J Biol Buccale 6:75–90

    PubMed  CAS  Google Scholar 

  • Grajower R, Azaz B, Bron-Levi M (1977) Microhardness of sclerotic dentin. J Dent Res 56:446 (short paper)

    PubMed  CAS  Google Scholar 

  • Granström G, Linde A, Nygren H (1978) Ultrastructural localization of alkaline phosphatases in rat incisor odontoblasts. J Histochem Cytochem 26:359–368

    PubMed  Google Scholar 

  • Grön P (1978) Inorganic chemical and structural aspects of oral mineralized tissues. In: Shaw JH, Sweeney FA, Capuccino CC, Meller SM (eds) Textbook of oral biology, vol 15. Saunders, Philadelphia, pp 484–507

    Google Scholar 

  • Grossman ES, Austin JC (1983) Scanning electron microscope observations on the tubule content of freeze fractured peripheral vervet monkey dentine (Cercopithecus pygerythrus). Arch Oral Biol 28:279–281

    PubMed  CAS  Google Scholar 

  • Gunji T (1983) Morphological research on the sensitivity of dentin. Arch Histol Jpn 45:45–67

    Google Scholar 

  • Gunji T, Koyabashi S (1983) Distribution and organization of odontoblast processes in human dentine. Arch Histol Jpn 46:213–219

    PubMed  CAS  Google Scholar 

  • Gustafson G (1950) Age determinations on teeth. J Am Dent Assoc 431:45–54

    Google Scholar 

  • Haldi J, Wynn W (1963) Protein fractions of the blood plasma and dental pulp fluid in the dog. J Dent Res 42:1217–1221

    PubMed  CAS  Google Scholar 

  • Haldi J, Wynn W, Culpepper WD (1961) Dental pulp fluid. I. Relationship between dental pulp fluid and blood plasma in protein, glucose and inorganic content. Arch Oral Biol 3:201–206

    CAS  Google Scholar 

  • Hals E (1983) Observations on giant tubules in human coronal dentin by light microscopy and microradiography. Scand J Dent Res 91:1–7

    PubMed  CAS  Google Scholar 

  • Hansson LI, Stenström A, Thorngren KG (1978) Effect of pituitary hormones on dentine production in maxillary incisors in the rat. Scand J Dent Res 86:80–86

    PubMed  CAS  Google Scholar 

  • Harcourt JK, Johnson NW, Storey E (1962) In vivo incorporation of tetracycline in the teeth of man. Arch Oral Biol 7:431–437

    PubMed  CAS  Google Scholar 

  • Harris R, Griffin CJ (1969) The fine structure of the mature odontoblasts and cell rich zone of the human dental pulp. Aust Dent J 14:168–177

    PubMed  CAS  Google Scholar 

  • Harris R, Griffin CJ (1978) Fine structure of nerve endings in the human dental pulp. Arch Oral Biol 13:773–778

    Google Scholar 

  • Hawkinson RW, Eisenmann DR (1983) Electron microscopy of dentinal tubule sclerosis in the enamel free region of the rat molar. Arch Oral Biol 28:409–414

    PubMed  CAS  Google Scholar 

  • Helmcke GH (1968) Formen and Strukturen der Interglobulärraume im menschlichen Dentin. Bull Group Int Rech Sci Stomatol Odontol 11:317–328

    CAS  Google Scholar 

  • Helmcke JG (1955) Elektronenmikroskopische Strukturuntersuchungen an gesunden und kranken Zähnen. Dtsch Zahnärztl Ztschrft 15:1461–1478

    Google Scholar 

  • Helmcke JG, Jahn B (1952) Elektronenmikroskopische Untersuchungen liber das Dentin im menschlichen Zahn. Naturwissenschaften 39:492–493

    Google Scholar 

  • Helwig G, Menke E (1949) Elektronenmikroskopie an Zellfortsatzen im menschlichen Zahnbein. Naturwissenschaften 36:281–283

    Google Scholar 

  • Höhling HJ (1966) Die Bauelemente von Zahnschmelz und Dentin aus morphologischer, chemischer und strukureller Sicht. 1st edn. Hanser, München

    Google Scholar 

  • Hohling HJ, Steffens H, Heuck F (1972) Untersuchung zur Mineralisationsdichte im Hartgewebe mit Protein-Polysaccharid bzw. mit Kollagen als Hauptbestandteil der Matrix. Z Zellforsch 134:283–296

    PubMed  CAS  Google Scholar 

  • Holland GR (1975a) Membrane junctions on cat odontoblasts. Arch Oral Biol 20:551–552

    PubMed  CAS  Google Scholar 

  • Holland GR (1975b) The dentinal tubule and odontoblast process in the cat. J Anat 120:169–177

    PubMed  CAS  Google Scholar 

  • Holland GR (1976a) Lanthanum hydroxide labelling of gap junctions in the odontoblast layer. Anat Rec 186:121–126

    Google Scholar 

  • Holland GR (1976b) The extent of the odontoblast process in the cat. J Anat 121:133–149

    PubMed  CAS  Google Scholar 

  • Holland GR (1985) The odontoblast process: form and function. J Dent Res 64:499–514 (special issue)

    PubMed  Google Scholar 

  • Hopewell-Smith A (1903) The histology and pathohistology of the teeth and associated parts. 1st edn. The Dental Manufacturing Co, London

    Google Scholar 

  • Hugues K, Mead R, Adams D (1982) A scanning electron microscope study of root development in human unerupted wisdom teeth. J Dent Res 61:557 (abstract)

    Google Scholar 

  • Hunter J (1778) The natural history of human teeth, 2nd edn. Johnson, London

    Google Scholar 

  • Iguchi Y, Yamamura T, Ichikawa T, Hashimoto S, Horiuchi T, Shimono M (1984) Intercellular junctions in odontoblasts of the rat incisors studied with freeze fracture. Arch Oral Biol 29:487–497

    PubMed  CAS  Google Scholar 

  • Isokawa S, Toda Y, Kubota K (1970) A scanning electron microscopic observation of etched human peritubular dentine. Arch Oral Biol 15:1303–1306

    PubMed  CAS  Google Scholar 

  • Ivanyi D (1972) Nucleoli of human odontoblasts. Arch Oral Biol 17:931–936

    PubMed  CAS  Google Scholar 

  • Jessen H (1967) The ultrastructure of odontoblasts in perfusion fixed demineralized incisors of adult rats. Acta Odontol Scand 25:491–523

    PubMed  CAS  Google Scholar 

  • Johansen E (1964) Microstructure of enamel and dentin. J Dent Res 43:1007–1020

    PubMed  Google Scholar 

  • Johansen E (1967) Ultrastructure of dentine. In: Miles AEW (ed) Structural and chemical organization of teeth, vol II. Academic, New York, pp 35–74

    Google Scholar 

  • Johansen E, Parks HF (1962) Electron microscopic observations of sound human dentin. Arch Oral Biol 7:185–193

    PubMed  CAS  Google Scholar 

  • Johnson NW, Poole DFG (1967) Orientation of collagen fibers in dentine. Nature 213:695–696

    PubMed  CAS  Google Scholar 

  • Jones SJ, Boyde A (1984) Ultrastructure of dentin and dentinogenesis. In: Linde A (ed) Dentin and dentinogenesis, vol I. CRC Press, Boca Raton, pp 81–134

    Google Scholar 

  • Karim A, Cournil I, Leblond CP (1979) Immunohistochemical localization of procollagens. II. Electron microscopic distribution of procollagen I antigenicity in the odontoblasts and predentin of rat incisor teeth by a direct method using peroxidase linked antibodies. J Histochem Cytochem 27:1070–1083

    PubMed  CAS  Google Scholar 

  • Karjalainen S (1984) Secondary and reparative dentin formation. In: Linde A (ed) Dentin and dentinogenesis, vol II. CRC Press, Boca Raton, pp 7–420

    Google Scholar 

  • Katchburian E, Holt SJ (1968) Ultrastructural studies on lysosomes and acid phosphatase in odontoblasts. In: Symons NBB (ed) Dentine and pulp: their structure and reactions. Livingstone, Edinburgh, pp 43–57

    Google Scholar 

  • Kawasaki K, Tanaka S, Ishikawa T (1977) On the increment lines in human dentine as revealed by tetracycline labelling. J Anat 123:427–436

    PubMed  CAS  Google Scholar 

  • Kawasaki K, Tanaka S, Ishikawa T (1980) On the daily incremental lines in human dentin. Arch Oral Biol 24:939–943

    Google Scholar 

  • Keil A (1939) Uber den Feinbau des normalen und krankhaften Zahnbeins nach Untersuchung im polarisierten Licht. Dtsch Zahn Mund Kieferheilk 6:347–364

    Google Scholar 

  • Kelley KW, Bergenholtz G, Cox CF (1981) The extent of the odontoblast process in rhesus monkey (Macaca mulatto) as observed by scanning electron microscopy. Arch Oral Biol 26:893–897

    PubMed  CAS  Google Scholar 

  • Kennedy JJ, Teuscher GW, Fosdick LS (1953) The ultramicroscopic structure of enamel and dentin. J Am Dent Assoc 46:423–431

    Google Scholar 

  • Ketterl E (1961) Stüdie liber das Dentin der permanenten Zähne des Menschen. Stoma 14:148–163

    Google Scholar 

  • Kline LW, Thomas NR (1977) The role of calcitonin in the calcification of dental matrix. J Dent Res 56:862–865

    PubMed  CAS  Google Scholar 

  • Kockapan C (1984) Elektronenmikroskopische Untersuchungen an menschlichen Zähnen über die Struktur des Interglobulardentins unter besonderer Berücksichtigung von Karies und Abrasion. Habilitationsschrift, Justus Liebig Universität, Giessen/Lahn

    Google Scholar 

  • Köling A (1983) “Membrane structures in the human pulpdentin region. An electron microscopic investigation of permanent teeth using the freeze fracture technique”; Doctorat thesis, Universitet Centraltryckeriet, Uppsala

    Google Scholar 

  • Kölliker A (1852) Handbuch der Gewebelehre des Menschen. 1st edn. Engelmann, Leipzig

    Google Scholar 

  • Kreudenstein T von Spreter, Stuben J von (1956) Dentinstoffwechselstudien. IV. Über die Gewinnung des Dentinliquors durch Elution zum Zweck der Bestimmung seiner Bestandteile sowie Untersuchungen über den Wassergehalt des Dentins und über das Dentin-Liquorspatium. Dtsch Zahnārztl Z 11:1214–1220

    Google Scholar 

  • Kuttler Y (1959) Classification of dentin into primary, secondary and tertiary. Oral Surg 12:906–1001

    Google Scholar 

  • La Fleche R, Frank RM, Steuer P (1985) The extent of the human odontoblast process as determined by transmission electron microscopy: the hypothesis of a retractable suspensor system. J Biol Buccale 13:293–305

    PubMed  Google Scholar 

  • Laikkö I, Larmas M (1979) Changes of dentinal inorganic phosphate in different areas of sound and carious human teeth. Caries Res 13:32–38

    PubMed  Google Scholar 

  • Larsson A, Bloom GD (1973) Studies on dentinogenesis in the rat. Fine structure of developing odontoblasts and predentin in relation to the mineralization process. Z Anat Entwickl Gesch 139:227–246

    CAS  Google Scholar 

  • Lavelle CLB, Shellis RP, Poole DFG (1977) Evolutionary changes to the primate skull and dentition. Thomas, Springfield/Illinois

    Google Scholar 

  • Lefèvre ML, Manly RS (1938) Moisture, inorganic and organic constituents of enamel and dentin from carious teeth. J Am Dent Assoc 25:233–242

    Google Scholar 

  • Lefevre R, Frank RM, Voegel JC (1976) The study of human dentine with secondary ion microscopy and electron diffraction. Calcif Tissue Res 19:251–261

    PubMed  CAS  Google Scholar 

  • Lenz H (1955) Elektronenmikroskopischer Nachweis der Dentinveränderungen durch Karies. Dtsch Zahn Mund Kieferheilk 22:24–33

    CAS  Google Scholar 

  • Lester KS, Boyde A (1967) Electron microscopy of predentinal surfaces. Calcif Tissue Res 1:44–54

    PubMed  CAS  Google Scholar 

  • Lester KS, Boyde A (1968) The surface morphology of some crystalline components of dentine. In: Symons NBB (ed) Dentine and pulp: their structure and reactions. Livingstone, London, pp 197–219

    Google Scholar 

  • Leuwenhoek A van (1675) Microscopical observations on the structure of teeth and other bones. Phil Trans Martyn (London) 10:1002–1003

    Google Scholar 

  • Linde A (1973) A study of the dental pulp glycosaminoglycans from permanent human teeth and rat and rabbit incisors. Arch Oral Biol 18:49–59

    PubMed  CAS  Google Scholar 

  • Linde A (1984) Non-collagenous proteins and proteoglycans in dentinogenesis. In: Linde A (ed) Dentin and dentinogenesis, vol II. CRC Press, Boca Raton, pp 55–92

    Google Scholar 

  • Linde A (1985) The extracellular matrix of the dental pulp and dentine. J Dental Res 64:523–529 (Special Issue)

    Google Scholar 

  • Linde A, Johansson S, Jonsson R, Jontell M (1982) Localization of fibronectin during dentinogenesis in rat incisor. Arch Oral Biol 27:1069–1073

    PubMed  CAS  Google Scholar 

  • Lindskog S, Hammarström L (1982) The possible origin and nature of Tomes’ granular layer. J Dent Res 61:589 (abstract)

    Google Scholar 

  • Magloire H, Dumont J (1976) Etude ultrastructurale de cellules pulpaires humaines cultivees “in vivo”. J Biol Buccale 4:3–20

    PubMed  CAS  Google Scholar 

  • Maniatopoulos C, Smith DC (1983) A scanning electron microscopic study of the odontoblast process in human coronal dentine. Arch Oral Biol 28:701–710

    PubMed  CAS  Google Scholar 

  • Martens P (1968) Human dentinogenesis with special regard to the formation of peritubular crown dentine and zones in fetal deciduous and unabraded permanent teeth. Scand J Dent Res (Suppl) 76:5–169

    CAS  Google Scholar 

  • Massler M, Schour I (1946) The appositional life span of the enamel and dentin-forming cells. I. Human deciduous teeth and first permanent molars. J Dent Res 25:145–150

    PubMed  CAS  Google Scholar 

  • Matsumiya S, Takuma S (1954) Atlas of electron micrographs of the human dental tissues, 1st edn. Dental College Press, Tokyo

    Google Scholar 

  • Mendis BRR, Darling AI (1979) A scanning electron microscope and microradiographic study of closure of human coronal dentinal tubules related to occlusal attrition and caries. Arch Oral Biol 24:725–733

    PubMed  CAS  Google Scholar 

  • Menke E (1950) Elektronenmikroskopie der menschlichen Zahnhartsubstanz. Z Anat Dtsch 115:1–18

    Google Scholar 

  • Mennehöh S, Fahnenbrock M (1951) Über elektronenmikroskopische Abbildung lebender Zähne mit Hilfe des Polymerisationsabdruckverfahrens. Kolloid Zeitschr 121:155–157

    Google Scholar 

  • Miller J (1954) The microradiographic appearance of dentine. Br Dent J 97:7–9

    Google Scholar 

  • Miller J (1981) Large tubules in dentine. J Dent Child 48:296–271

    Google Scholar 

  • Miller WA, Eick JD, Neiders ME (1971) Inorganic components of the peritubular dentin in young permanent teeth. Caries Res 5:264–278

    PubMed  CAS  Google Scholar 

  • Miller WD (1980) Micro-organisms of the human mouth, 1st edn. SS White Dent Mfg Co, Philadelphia, p 156

    Google Scholar 

  • Mjör IA (1979) Dentin and pulp. In: Mjör IA, Feyerskov O (eds) Histology of the human tooth, 1st edn. Munksgaard, Copenhagen, pp 43–73

    Google Scholar 

  • Mjör IA (1983) Dentin and pulp. In: Mjör IA (Ed) Reaction patterns in human teeth. CRC Press, Boca Raton, pp 63–156

    Google Scholar 

  • Mjör IA (1985) Dentin-predentin complex and its permeability: pathology and treatment overview. J Dent Res 64:622–627 (special issue)

    Google Scholar 

  • Moss ML (1974) Studies on dentin. I. Mantle dentin. Acta Anat (Basel) 87:481–490

    CAS  Google Scholar 

  • Nagai N (1970) Ultrastructural localization of acid phosphatase in odontoblasts of young rat incisors. Bull Tokyo Dental Coll 11:85–120

    CAS  Google Scholar 

  • Nagai N, Takuma S, Goto Y, Ogiwara H (1974) Electron microscopy of dentine and predentine of developing rat molars stained with ruthenium red. J Biol Buccale 2:73–83

    PubMed  CAS  Google Scholar 

  • Nakahara H (1982) Electron microscopic studies of the lattice image and central dark line of crystallites in sound and carious human dentin. Bull Josai Dent Univ 11:209–215

    CAS  Google Scholar 

  • Nalbandian J, Sognnaes RF (1960) Structural changes in human teeth. In: Shock NW (ed) Aging- some social and biological aspects. Am Assoc Adv Sci, Washington, pp 367–382

    Google Scholar 

  • Nalbandian J, Gonzales F, Sognnaes RF (1960) Sclerotic age changes in root dentin of human teeth as observed by optical, electron and X-ray microscopy. J Dent Res 39:598–607

    PubMed  CAS  Google Scholar 

  • Nalbandian J, Hagopian M, Patters M (1982) The microscopic distribution of tetracycline in human teeth. J Biol Buccale 10:271–279

    PubMed  CAS  Google Scholar 

  • Neumann E (1863) Beitrag zur Kenntniss des normalen Zahnbein- und Knochengewebes. 1st edn. Voegel, Leipzig

    Google Scholar 

  • Nikiforuk G, Fraser D (1979) Etiology of enamel hypoplasia and interglobular dentin: the roles of hypocalcemia and hyposphosphatemia. Met Bone Dis Rel Res 2:17–23

    Google Scholar 

  • Nygren H, Hansson HA, Linde A (1976) Ultrastructural localization of proteoglycans in the odontoblast-predentin region of rat incisor. Cell Tissue Res 168:277–287

    PubMed  CAS  Google Scholar 

  • Osborn JW (1967) A mechanistic view of dentinogenesis and its relation to the curvatures of the processes of the odontoblast. Arch Oral Biol 12:275–280

    PubMed  CAS  Google Scholar 

  • Owen R (1845) Odontography or a treatise on comparative anatomy of the teeth: their physiological relations, mode of development and microscopic structure in vertebrate animals, 1st edn. Baillière, London

    Google Scholar 

  • Owens PDA (1972) Light microscopic observations on the formation of the layer of Hopewell-Smith in human teeth. Arch Oral Biol 17:1785–1789

    PubMed  CAS  Google Scholar 

  • Owens PDA (1975) The fine structure of coronal root region of premolar teeth in dogs. Arch Oral Biol 20:705–712

    PubMed  CAS  Google Scholar 

  • Pasley DH, Nelson QR, Williams EC, Kepler EE (1981) Use of dentine fluid protein concentrations to measure pulp capillary reflection coefficient in dogs. Arch Oral Biol 26:703–706

    Google Scholar 

  • Pease DC (1951) Electron microscopy of sectioned teeth. Anat Rec 110:539–547

    PubMed  CAS  Google Scholar 

  • Penman S, Capco DG, Fey EG, Chatterjee P, Reiter T, Ermish S, Wan K (1983) The three-dimensional structural networks of cytoplasm and nucleus: function in cells and tissue. Modern cell biology, vol 2. Liss, New York, pp 385–445

    Google Scholar 

  • Plackova A, Stepanek J (1960) Zur Kenntnis der peritubulären Zone des Dentins. Z Zellforsch 52:730–738

    PubMed  CAS  Google Scholar 

  • Porter KR, Beckerle M, McNiven M (1983) The cytoplasmic matrix. Modern cell biology, vol 2. Liss, New York, 259–302

    Google Scholar 

  • Posner AS, Tannenbaum PJ (1984) The mineral phase of dentin. In: Linde A (ed) Dentin and dentinogenesis, vol II. CRC Press, Boca Raton, pp 17–36

    Google Scholar 

  • Quigley MB, Starrs JW, Zwarych PD (1965) Demonstration of calcospherites in mature human dentin. J Dent Res 44:794–800

    PubMed  CAS  Google Scholar 

  • Reith EJ (1968) Ultrastructural aspects of dentinogenesis. In: Symons NBB (ed) Dentin and pulp: their structure and reaction. Livingstone, Edinburgh, pp 15–57

    Google Scholar 

  • Retzius G (1894) Zur Kenntniss der Endungsweise der Nerven in den Zahnen. Biol Untersuch 6:64–69

    Google Scholar 

  • Rosenberg GD, Simmons DJ (1980) Rhythmic dentinogenesis in the rabbit incisor: circadian, ultradian and infradian periods. Calcif Tissue Int 32:29–44

    PubMed  CAS  Google Scholar 

  • Rothman JE (1981) The Golgi apparatus: two organelles in tandem. Science 213:1212–1219

    PubMed  CAS  Google Scholar 

  • Rouiller CL (1951) La gaine de Neumann; These Dr Med n° 2064. Med Hygiene ed, Geneve

    Google Scholar 

  • Sasaki T, Eshida I, Higashi S (1982) Ultrastructure and cytochemistry on old odontoblasts in rat incisors. J Electron Microsc (Tokyo) 31:378–388

    CAS  Google Scholar 

  • Sasaki T, Tominaga H, Higashi S (1984) Endocytic activity of kitten odontoblasts in early dentinogenesis. 1. Thin section and freeze fracture study. J Anat 138:485–492

    PubMed  Google Scholar 

  • Sattelberg C, Turner DF (1984) Anatomical evidence for existence of zonula occludens between pulpal odontoblasts. J Dental Res 63:225 (abstract) (special issue)

    Google Scholar 

  • Sauk JJ Jr, Brown DM, Corbin KW, Witkop CJ Jr (1976) Glycosaminoglycans of predentin, peritubular dentin and dentin: A biochemical and electron microscopic study. Oral Surg 11:623–630

    Google Scholar 

  • Scherft JP (1972) The lamina limitans of the organic matrix of calcified cartilage and bone. J Ultrastr Res 38:318–331

    CAS  Google Scholar 

  • Schmidt WJ, Keil A (1958) Die gesunden und erkrankten Zahngewebe des Menschen und der Wirbeltiere im Polarisationsmikroskop, 1st edn. Hanser, München

    Google Scholar 

  • Schour I, Dyke HB (1932) The effect of replacement therapy on the eruption of the incisor of the hypophysectomized rat. Proc Soc Exp Biol Med 29:378–382

    Google Scholar 

  • Schour I, Poncher HG (1937) The rate of apposition of human enamel and dentin as measured by the effects of acute fluorosis. Am J Dis Child 54:765–776

    Google Scholar 

  • Schour I, Chandler SB, Tweedy WR (1937) Changes in the teeth following parathyroidectomy. Am Pathol 13:945–970

    CAS  Google Scholar 

  • Schroeder L, Frank RF (1985) High resolution transmission electron microscopy of adult human peritubular dentine. Cell Tissue Res 242:449–451

    PubMed  CAS  Google Scholar 

  • Scott DB (1952) Electron microscopy of tooth structure. Oral Surg Oral Med Oral Pathol 5:527–535

    PubMed  CAS  Google Scholar 

  • Scott DB (1955) The electron microscopy of enamel and dentine. Ann NY Acad Sci 60:575–585

    PubMed  CAS  Google Scholar 

  • Scott DB, Kennedy J J (1950) Electron microscopy of human dentine. J Dent Res 29:556–560

    PubMed  CAS  Google Scholar 

  • Scott DB, Wyckoff RWG (1947) Electron microscopy of tooth structure by the shadowed collodion replica method. Public Health Rep 62:1513–1516

    PubMed  CAS  Google Scholar 

  • Scott J, Weber DF (1977) Microscopy of the junctional region between human coronal primary and secondary dentine. J Morphol 154:133–145

    PubMed  CAS  Google Scholar 

  • Scott JH, Symons NBB (1982) Introduction to dental anatomy, 9th edn. Churchill, Livingstone Edinburgh, p 419

    Google Scholar 

  • Selvig KA (1968) Ultrastructural changes in human dentine exposed to a weak acid. Arch Oral Biol 13:719–734

    PubMed  CAS  Google Scholar 

  • Selvig KA (1970) Periodic lattice images of hydroxyapatite crystals in human bone and dental hard tissues. Calcif Tissue Res 6:227–238

    PubMed  CAS  Google Scholar 

  • Shaekleford JH (1971) The structure of Tomes granular layer in dog premolar teeth. Anat Rec 170:357–368

    Google Scholar 

  • Shimauchi K, Yoshie T, Hasegaawa S, Fujioka S, Kizu T, Ideda K (1973) A scanning electron microscope study of intratubular dentin fibers. J Nihon Univ Sch Dent 15:113–117

    Google Scholar 

  • Shroff FR, Williamson KI, Bertaud WS (1954) Electron microscope studies of dentine: true nature of the dentine canals. Oral Surg 7:662–670

    PubMed  CAS  Google Scholar 

  • Shroff FR, Williamson KI, Bertaud WS, Hall DM (1956) Further electron microscope studies of dentine. Oral Surg 9:432–443

    PubMed  CAS  Google Scholar 

  • Sigal MJ, Aubin JE, Ten Cate AR, Pitaru S (1984a) The odontoblast process extends to the dentinoenamel junction: an immunocytochemical study of rat dentine. J Histochem Cytochem 32:872–877

    PubMed  CAS  Google Scholar 

  • Sigal MJ, Pitaru S, Aubin JE, Ten Cate AR (1984b) A combined scanning electron microscopy and immunofluorescence study demonstrating that the odontoblast process extends to the dentinoenamel junction in human teeth. Anat Rec 210:453–462

    PubMed  CAS  Google Scholar 

  • Spector M (1975) High resolution electron microscope study of lattice images in biological apatites. J Microc 103:55–62

    CAS  Google Scholar 

  • Stanley HR, White CL (1966) The rate of tertiary (reparative) dentine formation in the human tooth. Oral Surg Oral Med Oral Pathol 21:180–189

    PubMed  CAS  Google Scholar 

  • Stewart DJ (1968) Tetracyclines: their prevalence in children’s teeth. Br Dent J 124:318–320

    PubMed  CAS  Google Scholar 

  • Sundström B, Takuma S, Nagai N (1970) Ultrastructural aspects of human dentine decalcified with chromium sulphate. Calcif Tissue Res 4:305–313

    PubMed  Google Scholar 

  • Symons NBB (1961) A histochemical study of the intertubular and peritubular matrices in normal human dentine. Arch Oral Biol 5:241–250

    Google Scholar 

  • Symons NBB (1968) The formation of primary and secondary dentine. In: Symons NBB (ed) Dentine and pulp: their structure and reactions. Livingstone, London, pp 67–76

    Google Scholar 

  • Syrrist A (1949) An introduction in electron microscopy with some results from histological investigations of enamel and dentine. Odont Tidskr 57:79–105

    CAS  Google Scholar 

  • Syrrist A, Gustafson G (1951) A contribution to the technique of the electron microscopy of dentine. Odont Tidskr 59:500–513

    CAS  Google Scholar 

  • Taintor JF, Biesterfeld RC, Langeland K (1981) Irritational or reparative dentin. A challenge of nomenclature. Oral Surg 51:443–449

    Google Scholar 

  • Takagi M, Parmley RT, Denys FR (1981) Ultrastructural localization of complex carbohydrates in odontoblasts, predentin and dentin. J Histochem Cytochem 29:747–758

    PubMed  CAS  Google Scholar 

  • Takuma S (1960) Electron microscopy of the structure around the dentinal tubule. J Dent Res 39:973–981

    PubMed  CAS  Google Scholar 

  • Takuma S, Eda S (1966) Structure and development of the peritubular matrix in dentin. J Dent Res 45:683–692

    Google Scholar 

  • Takuma S, Nagai N (1971) Ultrastructure of rat odontoblasts in various stages of their development and maturation. Arch Oral Biol 16:993–1011

    PubMed  CAS  Google Scholar 

  • Takuma S, Katagiri S, Ozasa S (1966) Electron probe microanalysis of horse dentin. J Electron Microsc (Tokyo) 15:86–89

    CAS  Google Scholar 

  • Tanaka T (1980) The origin and localization of dentinal fluid in developing rat molar teeth studied with lanthanum as a tracer. Arch Oral Biol 25:153–162

    PubMed  CAS  Google Scholar 

  • Ten Cate AR (1967) A histochemical study of the human odontoblast. Arch Oral Biol 12:963–969

    PubMed  Google Scholar 

  • Ten Cate AR (1972a) Morphological studies of fibrocytes in connective tissue undergoing rapid remodelling. J Anat 112:401–404

    PubMed  Google Scholar 

  • Ten Cate AR (1972b) An analysis of Tomes’ granular layer. Anat Rec 172:137–148

    PubMed  Google Scholar 

  • Ten Cate AR (1978) A fine structural study of coronal and root dentinogenesis in the mouse: observations on the so-called von Korff fibres and their contribution to mantle dentine. J Anat 125:183–197

    PubMed  Google Scholar 

  • Ten Cate AR (1980) Oral histology, development structure and function, 1st edn. Mosby, St Louis, p 449

    Google Scholar 

  • Ten Cate AR, Deporter DA (1974) The role of the fibroblast in collagen turnover in the functioning periodontal ligament of the mouse. Arch Oral Biol 19:339–340

    PubMed  Google Scholar 

  • Ten Cate AR, Deporter DA, Freeman E (1976) The role of fibroblasts in the remodelling of periodontal ligament during physiologic tooth movement. Am J Orthod 69:155–168

    PubMed  Google Scholar 

  • Thesleff I, Stenman S, Vaheri A, Timpl R (1979) Changes in the matrix proteins, flbronectin and collagen during differentiation of mouse tooth germ. Dev Biol 70:116–126

    PubMed  CAS  Google Scholar 

  • Thesleff I, Barrach JH, Foldart JM, Vaheri A, Pratt RM, Martin GR (1981) Changes in the distribution of type IV collagen, laminin, proteoglycan and flbronectin during mouse tooth development. Dev Biol 81:182–192

    PubMed  CAS  Google Scholar 

  • Thomas HF (1979) The extent of the odontoblast process in human dentine. J Dent Res 58/D:2207–2218

    Google Scholar 

  • Thomas HF (1983) The effect of various fixatives on the extent of the odontoblast process in human dentine. Arch Oral Biol 28:465–469

    PubMed  CAS  Google Scholar 

  • Thomas HF (1984) The lamina limitans of human dentinal tubules. J Dent Res 63:1064–1066

    PubMed  CAS  Google Scholar 

  • Thomas HF (1985) The dentin-predentin complex and its permeability: anatomical overview. J Dent Res 64:607–612 (special issue)

    PubMed  Google Scholar 

  • Thomas HF, Carella P (1983) A scanning electron microscope study of dentinal tubules from unerupted human teeth. Arch Oral Biol 28:1125–1130

    PubMed  CAS  Google Scholar 

  • Thomas HF, Carella P (1984) Correlation of scanning and transmission electron microscopy of human dentin tubules. Arch Oral Biol 29:641–646

    PubMed  CAS  Google Scholar 

  • Thomas HF, Payne RC (1983) The ultrastructure of dentinal tubules from erupted human premolar teeth. J Dent Res 62:532–536

    PubMed  CAS  Google Scholar 

  • Tidmarsh BG (1981) Contents of human dentinal tubules. Int Endo J 14:191–196

    CAS  Google Scholar 

  • Tilney LG (1983) Interactions between actin filaments and membranes give spatial organization to cells. Moderrf Cell Biology, vol 2. Liss, New York, pp 163–199

    Google Scholar 

  • Tomes CS (1898) Upon the structure and development of the enamel of the elasmobranch fishes. Phil Trans B190:443–464

    Google Scholar 

  • Tomes J (1856) The presence of fibrils of soft tissue in the dentinal tubules. Proc R Soc Lond [Biol] 146:515–522

    Google Scholar 

  • Tominaga H, Sasaki T, Higashi S (1984) Ultrastructural changes in odontoblasts during early development. Bull Tokyo Dental Coll 25:9–26

    CAS  Google Scholar 

  • Torneck CD (1978) Intracellular destruction of collagen in the human dental pulp. Arch Oral Biol 23:745–747

    PubMed  CAS  Google Scholar 

  • Totdal B, Hals E (1985) Electron probe study of human and red deer cementum and root dentin. Scand J Dent Res 93:4–12

    PubMed  CAS  Google Scholar 

  • Tovborg Jensen A, Moller A (1948) Determination of size and shape of the apatite particles in different dental enamels and dentin by the X-ray powder method. J Dent Res 27:524–531

    CAS  Google Scholar 

  • Trautz OR, Klein E, Fessenden E, Addleston HK (1953) The interpretation of the X-ray diffractograms obtained from human dental enamel. J Dent Res 32:420–431

    PubMed  CAS  Google Scholar 

  • Tronstad L (1972) Optical and microradiographic appearance of intact and worn human coronal dentine. Arch Oral Biol 17:847–858

    PubMed  CAS  Google Scholar 

  • Tronstad L (1973a) Ultrastructural observations on human coronal dentin. Scand J Dent Res 81:101–111

    PubMed  CAS  Google Scholar 

  • Tronstad L (1973 b) Quantitative microradiography of intact and worn human coronal dentine. Arch Oral Biol 18:533–542

    PubMed  CAS  Google Scholar 

  • Tronstad L, Langeland K (1971) Electron microscopy of human dentin exposed by attrition. Scand J Dent Res 79:160–171

    PubMed  CAS  Google Scholar 

  • Tsatsas B, Frank RM (1972) Ultrastructure of the dentinal tubular substances near the dentinoenamel junction. Calcif Tissue Res 9:238–242

    PubMed  CAS  Google Scholar 

  • Vahl J, Höhling HJ, Frank RM (1964) Elektronenbeugungsuntersuchungen an rhomboedrisch aussehenden Mineralbildungen an kariosem Dentin. Arch Oral Biol 9:315–320

    PubMed  CAS  Google Scholar 

  • Vasiliadis L, Darling AI, Levers BGH (1983a) The amount and distribution of sclerotic human root dentine. Arch Oral Biol 28:645–649

    PubMed  CAS  Google Scholar 

  • Vasiliadis L, Darling AI, Levers BGH (1983b) The histology of sclerotic human root dentine. Arch Oral Biol 28:693–700

    PubMed  CAS  Google Scholar 

  • Vermot-Gaud M (1967) Mise en évidence et recherches statistiques sur la fréquence des canaux pulpo-parodontaux sur les molaires de lait et leur incidence sur l’infection du septum interradiculaire. Rev Franc Odont Stomat 14:1487–1504

    CAS  Google Scholar 

  • Voegel JC, Frank RM (1977) Ultrastructural study of apatite crystal dissolution in human dentine and bone. J Biol Buccale 5:181–194

    PubMed  CAS  Google Scholar 

  • Walkhoff O (1924) Neue Untersuchungen über den feineren Bau der Dentinkanälchen. Dtsch Monatschr Zahnheilk 42:521–540

    Google Scholar 

  • Wang YN, Ashrafi SH, Weber DF (1985) Scanning electron microscopic observations of casts of human dentin tubules along the interface between primary and secondary dentine. Anat Rec 211:149–155

    PubMed  CAS  Google Scholar 

  • Watson ML, Avery JK (1954) The development of the hamster lower incisor as observed by electron microscopy. Am J Anat 95:109–162

    PubMed  CAS  Google Scholar 

  • Weatherell J A, Robinson C (1973) The inorganic composition of teeth. In: Zipkin I (ed) Biological mineralization, vol 3. Wiley and Sons, New York, pp 43–74

    Google Scholar 

  • Weber DF (1969) Volume fractions analysis of human coronal dentin. Calcif Tissue Res 4:257–259

    PubMed  CAS  Google Scholar 

  • Weber DF (1974) Human dentine sclerosis: a microradiographic survey. Arch Oral Biol 19:163–169

    PubMed  CAS  Google Scholar 

  • Weber DF (1983) An improved technique for producing casts of the internal structure of hard tissues including some observations on human dentine. Arch Oral Biol 28:885–891

    PubMed  CAS  Google Scholar 

  • Weidenreich F (1925) Über den Bau und die Entwicklung des Zahnbeins in der Reihe der Wirbeltiere. Knochenstudien IV Teil. Z Anat Entwickl Gesch 76:218–260

    Google Scholar 

  • Weill R (1959) Etude histochimique de la dentine. La zone translucide de Bradford. La gaine de Neumann. Ann Histochim 4:59–71

    CAS  Google Scholar 

  • Weill R (1963) Histochimie et autoradiographic de la dent normale et pathologique. Arch Oral Biol [suppl] 7:111–123

    Google Scholar 

  • Weinstock M, Leblond P (1974) Synthesis, migration and release of precursor collagen by odontoblasts as visualized by radioautography after (3H-) proline administration. J Cell Biol 60:92–127

    PubMed  CAS  Google Scholar 

  • Weyman J (1968) Microscopic appearances of tetracycline deposition of human dentin. J Dent Res 47:742–745

    PubMed  CAS  Google Scholar 

  • White SW, Hulmes DJS, Miller A, Timmins PA (1977) Collagen-mineral axial relationship in calcified turkey leg tendon by X-ray and neutron diffraction. Nature 266:421–425

    PubMed  CAS  Google Scholar 

  • Whittaker D, Kneale M (1979) The predentine-dentine interface in human teeth. A scanning electron microscope study. Br Dent J 146:43–46

    PubMed  CAS  Google Scholar 

  • Winter GB (1962) Abscess formation in connection with deciduous molar teeth. Arch Oral Biol 7:373–380

    PubMed  CAS  Google Scholar 

  • Yamada T, Nakamura K, Iwaku M, Fusayama T (1983) The extent of the odontoblast process in normal and carious human dentin. J Dent Res 62:798–802

    PubMed  CAS  Google Scholar 

  • Yilmaz S, Newman HN, Poole DFG (1977) Diurnal periodicity of von Ebner growth lines in pig dentine. Arch Oral Biol 22:511–513

    PubMed  CAS  Google Scholar 

  • Young RA, Brown (1982) Structures of biological minerals. In: Nancollas GH (ed) Biological mineralization and demineralization. Dahlem Konferenzen. Springer, Berlin, pp 101–141

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frank, R.M., Nalbandian, J. (1989). Structure and Ultrastructure of Dentine. In: Teeth. Handbook of Microscopic Anatomy, vol 5 / 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83496-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83496-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83498-1

  • Online ISBN: 978-3-642-83496-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics