Vibronic Interactions and the Jahn-Teller Theorem

  • Isaac B. Bersuker
  • Victor Z. Polinger
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 49)


In this chapter the first principles which form the basis of the concept of vibronic interactions, the concept of mixing electronic states by nuclear displacements, are discussed. After analysis of the traditional adiabatic approximation and its limitations (Sec. 2.1), the so-called vibronic Hamiltonian which takes into account the nonadiabatic interaction of electrons and nuclei is deduced (Sect. 2.2). The proof and discussion of the Jahn-Teller theorem are presented in Sect. 2.3 by considering the shape of the adiabatic potential surface in the neighborhood of the point of electronic degeneracy where the deviations from the adiabatic approximation are most marked. This theorem served as a starting point for the development of the field as a whole, and therefore the physical consequences of the nonadiabatic vibronic mixing of electronic states are often called the Jahn-Teller effects.


Irreducible Representation Adiabatic Approximation Schrodinger Equation Adiabatic Potential Vibronic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    M. Born, J.R. Oppenheimer: Ann. Phys. (Leipzig) 84, 457–484 (1927)ADSGoogle Scholar
  2. 2.2
    M. Born, K. Huang: Dynamical Theory of Crystal Lattices (Oxford University Press, New York 1954) Sect. 14, Appendices VII and VIIIMATHGoogle Scholar
  3. 2.3
    A.A. Kiselev: Can. J. Phys. 56, 615–647 (1978)CrossRefMATHADSMathSciNetGoogle Scholar
  4. 2.4
    S. Benk, E. Sigmund: J. Phys. C 18, 533–550 (1985)ADSGoogle Scholar
  5. 2.5
    E.E. Nikitin: Adv. Chem. Phys. 28, 317–377 (1975)CrossRefGoogle Scholar
  6. 2.6
    A. Tohru, M. Kazuo: Photochem. Photobiol. 25, 315–326 (1977)CrossRefGoogle Scholar
  7. 2.7
    J. von Neumann, E. Wigner: Phys. Z. 30, 467–470 (1929)Google Scholar
  8. 2.8
    L.D. Landau, E.M. Lifshitz: Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Pergamon, Oxford 1977)Google Scholar
  9. 2.9
    H.A. Jahn, E. Teller: Proc. R. Soc. London, Ser. A 161, 220–235 (1937)CrossRefADSGoogle Scholar
  10. 2.10
    CM. Longuet-Higgins: Mol. Phys. 6, 445–460 (1963)CrossRefADSMathSciNetGoogle Scholar
  11. 2.11
    E.B. Wilson, Jr., J.C. Decius, P.C. Cross: Molecular Vibrations (McGraw-Hill, New York 1955)Google Scholar
  12. 2.12
    C.J. Bradley, A.P. Cracknell: The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Clarendon, Oxford 1972)Google Scholar
  13. 2.13
    J.S. Griffith: The Irreducible Tensor Method for Molecular Symmetry Groups (Prentice-Hall, Englewood Cliffs, NJ 1962)Google Scholar
  14. 2.14
    H.A. Jahn: Proc. R. Soc. London, Ser. A 164, 117–131 (1938)CrossRefADSGoogle Scholar
  15. 2.15
    E. Ruch, A. Schönhofer: Theor. Chim. Acta 3, 291–304 (1965)CrossRefGoogle Scholar
  16. 2.16
    E.J. Blount: J. Math. Phys. (NY) 12, 1890–1896 (1971)CrossRefMATHADSMathSciNetGoogle Scholar
  17. 2.17
    I.V.V. Raghavacharyulu: “Simple Proof of the Jahn-Teller Theorem”, in Proc. Nucl. Phys. and Solid State Phys. Symp., Bangelore 1973 (Dept. of Atomic Energy, New Delhi 1973) pp. 296–298Google Scholar
  18. 2.18
    I.V.V. Raghavacharyulu: “The Jahn-Teller Theorem for Space Groups”, in Proc. Nucl. Phys. and Solid State Phys. Symp., Bangelore 1973 (Dept. of Atomic Energy, New Delhi 1973) p. 299Google Scholar
  19. 2.19
    I.V.V. Raghavacharyulu: J. Phys. C 6, L455–L457 (1973)ADSGoogle Scholar
  20. 2.20
    J. Birman: Phys. Rev. 125, 1959–1961 (1962); ibid. 127, 1093-1106 (1962)CrossRefMATHADSGoogle Scholar
  21. 2.21
    R. Berenson, J.N. Kotzev, D.B. Litvin: Phys. Rev. B 25, 7523–7543 (1982)ADSMathSciNetGoogle Scholar
  22. 2.22
    S. Aronowitz: Phys. Rev. A 14, 1319–1325 (1976)ADSGoogle Scholar
  23. 2.23
    W.L. Clinton, B. Rice: J. Chem. Phys. 30, 542–546 (1959)CrossRefADSMathSciNetGoogle Scholar
  24. 2.24
    R. Renner: Z. Phys. 92, 172–193 (1934)CrossRefMATHADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Isaac B. Bersuker
    • 1
  • Victor Z. Polinger
    • 1
  1. 1.Department of Quantum ChemistryInstitute of Chemistry Academy of Sciences MoSSRKishinevUSSR

Personalised recommendations