Skip to main content

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 49))

  • 326 Accesses

Abstract

As is well known, the fundamental laws of electronic and nuclear motions determining the structure and properties of molecules and crystals were revealed in the 1930s immediately after the discovery of quantum mechanics. Because of mathematical difficulties encountered in the quantum-mechanical description of polyatomic systems, several essential approximations are usually employed in the solution of the appropriate Schrödinger equation, and among them the adiabatic approximation is the most important [1.1, 2]. This approximation is based on the difference in the masses (and hence velocities) of electrons and nuclei; due to this difference, for every position of the nuclei at any instant a stationary distribution of the electrons is attained. Without the adiabatic approximation the notion of spatial structure (nuclear configuration) becomes uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Born, J.R. Oppenheimer: Ann. Phys. (Leipzig) 84, 457–484 (1927)

    ADS  Google Scholar 

  2. M. Born, K. Huang: Dynamical Theory of Crystal Lattices (Oxford University Press, New York 1954) Sect. 14, Appendices VII and VIII

    MATH  Google Scholar 

  3. E. Teller: “An Historical Note”, in The Jahn-Teller Effect in Molecules and Crystals, ed. by R. Englman (Wiley, New York 1972)

    Google Scholar 

  4. J. von Neumann, E. Wigner: Phys. Z. 30, 467–470 (1929)

    Google Scholar 

  5. L.D. Landau, E.M. Lifshitz: Quantum Mechanics: Non-Relatiuistic Theory, 3rd ed., Course of Theoretical Physics, Vol. 3 (Pergamon, Oxford 1977)

    Google Scholar 

  6. H.A. Jahn, E. Teller: Proc. R. Soc. London, Ser. A 161, 220–235 (1937)

    Article  ADS  Google Scholar 

  7. J.H. Van Vleck: J. Chem. Phys. 7, 61–71, 72-84 (1939)

    Article  ADS  Google Scholar 

  8. W. Low: Paramagnetic Resonance in Solids (Academic, New York 1960)

    MATH  Google Scholar 

  9. M.D. Sturge: “The Jahn-Teller Effect in Solids”, in Solid State Physics, ed. by Seitz D. Turnbull, H. Ehrenreich, Vol. 20 (Academic, New York 1967) pp. 91–211

    Google Scholar 

  10. A. Abragam, B. Bleaney: Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford 1970) Chap. 21

    Google Scholar 

  11. I.B. Bersuker: The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry (Plenum, New York 1984)

    Google Scholar 

  12. F.S. Ham: “Jahn-Teller Effects in Electron Paramagnetic Resonance Spectra”, in Electron Paramagnetic Resonance, ed. by S. Geschwind (Plenum, New York 1972) pp. 1–119

    Google Scholar 

  13. R. Englman: The Jahn-Teller Effect in Molecules and Crystals (Wiley, New York 1972)

    Google Scholar 

  14. G.A. Gehring, K.A. Gehring: Rep. Prog. Phys. 38, 1–89 (1975)

    Article  ADS  Google Scholar 

  15. I.B. Bersuker, V. Z. Polinger: Adv. Quantum Chem. 15, 85–160 (1982)

    Article  ADS  Google Scholar 

  16. I.B. Bersuker: Coord. Chem. Rev. 14, 357–412 (1975)

    Article  Google Scholar 

  17. Yu.E. Perlin, B.S. Tsukerblat: The Effects of Electron-Vibrational Interactions in the Optical Spectra of Paramagnetic Impurity Ions (Shtiintsa, Kishinev 1974) [in Russian]

    Google Scholar 

  18. C.A. Bates: Phys. Rep. 35, 187–304 (1978)

    Article  ADS  Google Scholar 

  19. I.B. Bersuker, B.G. Vekhter: Ferroelectrics 19, 137–150 (1978)

    Article  Google Scholar 

  20. Yu.E. Perlin, M. Wagner: The Dynamical Jahn-Teller Effect in Localized Systems (North-Holland, Amsterdam 1984)

    Google Scholar 

  21. J.S. Slonczewski: Phys. Rev. 131, 1596–1610 (1963)

    Article  MATH  ADS  Google Scholar 

  22. C. Abulaffio, J. Irvine: Phys. Lett. B38, 492–494 (1972)

    ADS  Google Scholar 

  23. B.R. Judd: Can. J. Phys. 52, 999–1044 (1974)

    ADS  Google Scholar 

  24. B.S. Lee: J. Phys. A 9, 573–580 (1976)

    ADS  Google Scholar 

  25. L. Allen, J.H. Eberly: Optical Resonance and Two-Level Atoms (Wiley, New York 1975)

    Google Scholar 

  26. B. Duwall, V. Celli: Phys. Rev. 181, 276–286 (1969)

    ADS  Google Scholar 

  27. I.B. Bersuker (ed.): The Jahn-Teller Effect. A Bibliographic Review (IFI/Plenum, New York 1984)

    Google Scholar 

  28. I.B. Bersuker, I.Ya. Ogurtsov: Adv. Quantum Chem. 18, 1–84 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bersuker, I.B., Polinger, V.Z. (1989). Introduction. In: Bersuker, I.B., Polinger, V.Z. (eds) Vibronic Interactions in Molecules and Crystals. Springer Series in Chemical Physics, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83479-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83479-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83481-3

  • Online ISBN: 978-3-642-83479-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics