Computer Recognition of Spoken Letters and Digits

  • Renato De Mori
Conference paper
Part of the NATO ASI Series book series (volume 46)


Recent results on Automatic Speech Recognition (ASR) and Speech Analysis suggest that progress in designing recognition devices and in advancing speech science knowledge may arise from an integration of the so called cognitive and information-theoretic approaches/LEVINSON 85/.


Acoustic Property Automatic Speech Recognition Phonetic Feature Speech Unit Speech Recognition Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /BAHL 83/.
    Bahl L.R., Jelinek F., Mercer R. L., A Maximum Likelihood Approach to Continous Speech Recognition, IEEE Trans, on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No. 2, pp. 179 – 190, March 1983.CrossRefGoogle Scholar
  2. /BAHL 84/.
    Bahl L. R., Das S. K., de Souza P. V., Jelinek F., Katz S., Mercer R. L., Picheny M.A., Some experiments with Large-Vocabulary Isolated Word Sentence Recognition, Proc. of the IEEE Conference on Acoustic, Speech, and Signal Processing, San Diego, CA., pp. 2651 – 2653, March 1984.Google Scholar
  3. /BAIRD 86/.
    Baird H. S., Applications of Multidimensional Search to Structural Feature Identification, Proc. Nato Advanced Research Workshop on Syntactic and Structural Pattern Recognition, Sitges, Spain, October 1986.Google Scholar
  4. /BROWNSTON 85/.
    Brownston L, Farrel R., Kant E., Martin N., Programming Expert Systems in OPS5, Reading, MA: Addison-Wesley, 1985.Google Scholar
  5. /CHURCH 83/.
    Church K. W., Phrase-Structure Parsing: A Method for Taking Advantage of Allophonic Constraints, MIT/LCS/TR-296, Cambridge, MA, January 13, 1983. (MIT Ph.D. thesis).Google Scholar
  6. /DEMICHELIS 83/.
    Demichelis P., De Mori R., Laface P., O’Kane M., Computer Recognition of Plosive Sounds Using Contextual Information, IEEE TRANS. ACOUST., SPEECH, SIGNAL PROCESSING VOL. ASSP-31, PP. 359 – 377, 1983.CrossRefGoogle Scholar
  7. /DE MORI 79/.
    De Mori R., Gubrynowicz R., Laface P., Inference of a Knowledge Source for the Recognition of Nasals in Continous Speech, IEEE Trans, on Acoust, Speech, Signal Processing, vol. ASSP-27, no. 5, pp. 538 – 549, October 1979.CrossRefGoogle Scholar
  8. /DE MORI 85/.
    De Mori R., Laface P., Mong Y., Parallel Algorithms for Syllable Recognition in Continous Speech, IEEE Trans. Pattern Anal. Machine Intell., vol. 39, pp. 1 – 88, 1985.Google Scholar
  9. /DE MORI 85/.
    De Mori R., Laface P., Mong Y., Parallel Algorithms for Syllable Recognition in Continous Speech, IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 56 – 69, January 1985CrossRefGoogle Scholar
  10. /DE MORI 87/.
    De Mori R., Lam L., Gilloux M., Learning and Plan Refinement in a Knowledge-based System for Automatic Speech Recognition, IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, No. 2, pp. 289 – 305, 1987.CrossRefGoogle Scholar
  11. /ERMAN 80/.
    Erman L. D., Hayes-Roth F., Lesser V. R., Reddy D. R., The HEARSAY-II Speech Understanding System, Integrating Knowledge to Resolve Uncertainty, ACM Comput. Serveys, vol. 12, pp. 213 – 253, 1980.CrossRefGoogle Scholar
  12. /FERGUSON 80/.
    Ferguson J. D., Variable Duration Models for Speech, Proc. Symp. on Application of Hidden Markov Models to Text and Speech, J. D. Ferguson, Ed., Princeton, NJ, pp. 143 – 179, 1980.Google Scholar
  13. /FU 82/.
    Fu K. S., Syntactic Pattern Recognition and Applications, Prentice Hall, 1982.Google Scholar
  14. /HARALIK/.
    Haralick R. M., Personal CommunicationGoogle Scholar
  15. /JELINEK 84/.
    Jelinek F., The Development of an Experimental Discrete Dictation Recognizer, IEEE Proceedings, pp. 1616 – 1624, November 1984.Google Scholar
  16. /KLATT 77/.
    Klatt, D. H., Review of the ARPA Speech Understanding Project, J. Acoust. Soc. Amer., vol. 62, pp. 1345 – 1366, 1977.CrossRefGoogle Scholar
  17. /KOPEC 84/.
    Kopec G. E., Voceless Stop Consonant Identification Using LPC Spectra, Proc. of the IEEE Conference on Acoustics, Speech, and Signal Processing, San Diego CA., pp. 4211 – 4214, March 1984.Google Scholar
  18. /LAIRD 84/.
    Laird J. E., Universal Subgoaling, Dep. Comput. Sci. Carnegie-Mellon Univ., Pittsburgh, PA, Rep. CMU-CS-84–129, May 1984.Google Scholar
  19. /LEVINSON 81/.
    Levinson S., Rabiner L. R., Isolated and Connected word Recognition: Theory and Selected Applications, IEEE Trans, on Communications, Vol. COM-29, No. 5, pp.621 – 659, May 1981.Google Scholar
  20. /LEVINSON 85/.
    Levinson S. E., Structural Methods in Automatic Speech Recognition, IEEE Proceedings, pp. 1625 – 1650, November 1985.Google Scholar
  21. /MERLO 86/.
    Merlo E., De Mori R., Palakal M., Mercier G., A Continous Parameter and Frequency Domain Based Markov Model, in Proc. Inter. Conf. on Acoust., Speech, Signal Processing, pp. 1597 – 1600, Tokyo, Japan, 1986Google Scholar
  22. /MOSES 82/.
    Moses J., Computer Science as the Science of Discrete Man-made Systems, Knowledge: Creation, Diffusion, Utilization, Vol. 4, No. 2, pp. 219 - 226, December 1982,reprinted in the Study of Information: Interdisciplinary Messages, F. Machlup and U. Mansfield, eds., John Wiley and Sons, New York, NY, 1983.Google Scholar
  23. /NI 82/.
    Ni H. P., Feigeinbau E. A., Anton J. J., Rockmore A. J., Signal-to-symbol Transformation. HASP/SIAP Case Study, The Artificial Intelligence Magazine, vol. 3, No. 2, pp. 23 – 35, 1982.Google Scholar
  24. /RABINER 84/.
    Rabiner L. R., Wiopon J. G., Terrace S. G., A Directory Listing Retrieval System Based on Connected Letter Recognition, Proc. of the IEEE Conference on Acoustics, Speech, and Signal Processing, San Diego, CA, pp. 3541 – 3544, March 1984.Google Scholar
  25. /SACERDOTI 75/.
    Sacerdoti E. D., The Nonlinear Nature of Plans, IJCAI-4, International Joint Conference on Artificial Intelligence, Tbilisi, Georgia, USSR, September 1975, pp. 115 – 135.Google Scholar
  26. /SHAPIRO 86/.
    Shapiro L. G., Monald R. M, Sternberg S. R., Shape Recognition with Mathematical Morphology, Proc. 8th Inter. Conf. on Pattern Recognition, IEEE E.C. 86 CH 2342 - 4, Paris, France, pp. 416 – 418, 1986.Google Scholar
  27. /STEFIK 80/.
    Stefik, M. J.: Planning with Constraints, Stanford Heuristic Programming Project, Memo HPP-80–2, Computer Science Department, Report no. STAN-CS-80–784, January 1980.Google Scholar
  28. /STEVENS 80/.
    Stevens K. N., Acoustic Correlates of Some Phonetic Categories, J. Acoust. Soc. Amer., vol. 68, pp. 836 – 842, 1980.CrossRefGoogle Scholar
  29. /WALDINGER 77/.
    Waldinger R., Achieving Several Goals Simultaneously, Machine Intelligence, E. Elcock and D. Michie eds., Ellis Horwood, pp. 8, 94 – 136, 1977.Google Scholar
  30. /WILKINS 84/.
    Wilkins D. E., Domain-independent Planning: Representation and Plan Generation, Artificial Intell., vol. 22, no. 3, pp. 269 – 302, April 1984.MathSciNetCrossRefGoogle Scholar
  31. /ZUE 85/.
    Zue V. W., The Use of Speech Knowledge in Automatic Speech Recognition, IEEE Proceedings, pp. 1602 – 1615, November 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Renato De Mori
    • 1
  1. 1.School of Computer Science, Centre de recherche informatique de Montréal, inc.Mill UniversityMontréalCanada

Personalised recommendations