High-Performance Liquid Chromatography of the Neuropeptides: the Endogenous Opioid Peptides

  • A. T. McKnight
  • A. D. Corbett
  • S. J. Paterson
  • L. E. Robson
  • H. W. Kosterlitz
Part of the Monographs on Endocrinology book series (ENDOCRINOLOGY, volume 30)

Abstract

The first evidence for the existence of peptides in neurones of the mammalian nervous system was for the hypothalamic “neurohormones”, oxytocin and vasopressin and thyrotropin releasing hormone, luteinising hormone releasing hormone and somatostatin (see Hughes, 1978; Burgen, Kosterlitz and Iversen, 1980; Gregory, 1982). In the last ten years, however, it has become apparent that peptide containing neurones are not confined to the magnocellular/tuberoinfundibular systems, and that these and other “neuropeptides” are widely distributed throughout the central and peripheral nervous systems (Table 1). The list of peptides in Table 1 contains 38 of the best known “neuropeptides”, whose presence in neurones and/or nerve terminals is reasonably well established, but excludes the endogenous opioid peptides (Table 2); most of the peptides mentioned have likewise been found in the peripheral nervous system, or in the “gastroenteropancreatic and related endocrine system” (see Pearse, 1978; Hokfelt et al., 1980; Polak and Bloom, 1982; Gregory, 1982; Iversen, 1983; Iversen, 1984).

Keywords

HPLC Acetonitrile Morphine Angiotensin Nitrile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akil H, Watson SJ, Young E, Lewis ME (1984) Endogenous opioids: biology and function. Ann Rev Neurosci 7: 223–255PubMedCrossRefGoogle Scholar
  2. Burgen A, Kosterlitz HW, Iversen L (eds) (1980) Neuroactive peptides. The Royal Society, LondonGoogle Scholar
  3. Chang MM, Leeman SE (1970) Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterisation as substance P. J Biol Chem 245: 4784–4790PubMedGoogle Scholar
  4. Chang MM, Leeman SE, Niall HD (1971) Amino acid sequence of substance P. Nature [New Biol] 232: 86–87Google Scholar
  5. Corbett AD, Gillan MGC, Kosterlitz HW, McKnight AT, Paterson SJ, Robson LE (1984) Selectivities of opioid peptide analogues as agonists and antagonists at the 6-receptor. Brit J Pharmacol 83: 271–279Google Scholar
  6. Corbett AD, McKnight AT, Kosterlitz HW (1981) Tetraethylammonium facilitates the stimulation-evoked loss of the enkephalins from the myenteric plexus of the guinea-pig ileum. Proc Roy Soc Series B 213: 171–182CrossRefGoogle Scholar
  7. Corbett AD, Paterson SJ, McKnight AT, Magnan J, Kosterlitz HW (1982) Dynorphin1-8 and dynorphin1-9 are ligands for the K-subtype of opiate receptor. Nature 299: 79–81PubMedCrossRefGoogle Scholar
  8. Crawley JN (1985) Comparative distribution of cholecystokinin and other neuropeptides. Ann NY Acad Sci 448: 1–8PubMedCrossRefGoogle Scholar
  9. Desiderio DM (1984) Analysis of neuropeptides by liquid chromatography and mass spectrometry. Techniques and Instrumentation in Analytical Chemistry, Vol 6, Elsevier, AmsterdamGoogle Scholar
  10. Dunlapp III CE, Gentleman S, Lowney LI (1978) Use of trifluoroacetic acid in the separation of opiates and opioid peptides by reversed-phase high-performance liquid chromatography. J Chromatogr 160: 191–198CrossRefGoogle Scholar
  11. Eccles JC (1964) The Physiology of Synapses. Springer-Verlag, BerlinCrossRefGoogle Scholar
  12. Euler US v, Gadum JH (1931) An unidentified depressor substance in certain tissue extracts. J Physiol 72: 74–87Google Scholar
  13. Feldman JA, Cohn ML, Blair D (1978) Neuroendocrine peptides - analysis by reversed phase high performance liquid chromatography. J Liq Chromatogr 1: 833–848CrossRefGoogle Scholar
  14. Gillan MGC, Robson LE, McKnight AT, Kosterlitz HW (1985) K-binding and degradation of [3H]dynorphin A(1–8) and]3H]dynorphin A(1–9) in suspensions of guinea-pig brain membranes. J Neurochem 45: 1034–1042PubMedCrossRefGoogle Scholar
  15. Gregory RA (ed) (1982) Regulatory Peptides of Gut and Brain. Churchill Livingstone, LondonGoogle Scholar
  16. Hokfelt T, Everitt B, Holets VR, Meister B, Melander T, Schalling M, Staines W, Lundberg JM (1986) Coexistence of peptides and other active molecules in neurones: diversity of chemical signalling potential. In: Iversen LL, Goodman E (eds) Fast and Slow Chemical Signalling in the Nervous System, Oxford University Press, Oxford pp 205–231Google Scholar
  17. Hokfelt T, Lundberg JM, Schultzberg M, Johansson O, Skirboll L, Anggard A, Fredholm B, Hamberger B, Pernow B, Rehfeld J, Goldstein M (1980) Cellular localization of peptides in neural structures. Proc R Soc Lond (Biol) 210: 63–77CrossRefGoogle Scholar
  18. Hughes J (1975) Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res 88: 295–308PubMedCrossRefGoogle Scholar
  19. Hughes J (ed) (1978) Centrally Acting Peptides. Macmillan, LondonGoogle Scholar
  20. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258: 577–579PubMedCrossRefGoogle Scholar
  21. Iversen LL (1983) Nonopioid neuropeptides in mammalian CNS. Ann Rev Pharmacol Toxicol 23: 1–27CrossRefGoogle Scholar
  22. Iversen LL (1984) Amino acids and peptides: fast and slow chemical signals in the nervous system? The Ferrier Lecture 1983. Proc R Soc London (Biol) 221: 245–260CrossRefGoogle Scholar
  23. Iversen LL, Goodman E (eds) (1986) Fast and Slow Chemical Signalling in the Nervous System, Oxford University Press, OxfordGoogle Scholar
  24. Kosterlitz HW (1978) Endogenous opioid peptides: historical aspects. In: Hughes J (ed) Centrally Acting Peptides. Macmillan, London, pp 157–159Google Scholar
  25. Kosterlitz HW (1979) The best laid schemes o’ mice an’ men gang aft agley. Ann Rev Pharmacol Toxicol 19: 1–12CrossRefGoogle Scholar
  26. Kosterlitz HW, Corbett AD, Gillan MGC, McKnight AT, Paterson SJ, Robson LE (1985) Recent developments in the bioassay of opioids. Regulatory Peptides 11: suppl 4, 1–7CrossRefGoogle Scholar
  27. Kosterlitz HW, McKnight AT (1981) Opioid peptides and sensory function. Progr in Sensory Physiol 1: 31–95Google Scholar
  28. Kupfermann I (1979) Modulatory actions of neurotransmitters. Ann Rev Neurosci 2: 447–465PubMedCrossRefGoogle Scholar
  29. Lewis RV, Stern AS (1983) Biosynthesis of the enkephalins and enkephalin-containing polypeptides. Ann Rev Pharmacol Toxicol 23: 353–372CrossRefGoogle Scholar
  30. Lewis RV, Stern S, Gerber LD, Rubinstein M, Udenfriend S (1978) High molecular weight opioid-containing proteins in striatum. Proc Natl Acad Sci USA 75: 4021–4023PubMedCrossRefGoogle Scholar
  31. Loh YP, Brownstein MJ, Gainer H (1984) Proteolysis in neuropeptide processing and other neural functions. Ann Rev Neurosci 7: 189–222PubMedCrossRefGoogle Scholar
  32. McKnight AT, Corbett AD, Kosterlitz HW (1981) Inhibition of their breakdown and release of endogenous opioid peptides from the myenteric plexus-longitudinal muscle of the guinea-pig ileum. In: Tagaki H (ed) Advances in Endogenous and Exogenous Opioids. Kodansha, Tokyo, pp 188–190Google Scholar
  33. McKnight AT, Corbett AD, Kosterlitz HW (1983) Increase in potencies of opioid peptides after peptidase inhibition. Eur J Pharmacol 86: 393–402PubMedCrossRefGoogle Scholar
  34. McKnight AT, Corbett AD, Paterson SJ, Magnan J, Kosterlitz HW (1982) Comparison of in vitro potencies in pharmacological assays and binding assays after inhibition of peptidases reveals that dynorphin (1–9) is a potent x-agonist. Life Sci 31: 1725–1728PubMedCrossRefGoogle Scholar
  35. McKnight AT, Hughes J, Kosterlitz HW (1979) Synthesis of enkephalins by guinea-pig striatum in vitro. Proc R Soc London (Biol) 205: 199–207CrossRefGoogle Scholar
  36. McKnight AT, Sosa RP, Corbett AD, Kosterlitz HW (1980) Enkephalin precursors from guinea-pig myenteric plexus. In: Way EL (ed) Endogenous and Exogenous Opiate Agonists and Antagonists. Pergamon Press, New York, pp 213–216Google Scholar
  37. McKnight AT, Sosa RP, Hughes J, Kosterlitz HW (1978) Biosynthesis and release of enkephalins. In: van Ree JM; Terenius L (eds) Characteristics and Function of Opioids. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 259–269Google Scholar
  38. Mahy N, Tuselll JM, Gelpi E (1982) Study of leucine enkephalin in rat brain by a new high performance liquid chromatographic method. J Chromatogr 233: 115–122PubMedCrossRefGoogle Scholar
  39. Minamino N, Kangawa K, Fukuda A, Matsuo H, Igarashi M (1980) A new opioid octapeptide related to dynorphin from porcine hypothalamus. Biochem Biophys Res Commun 95: 1475–1481PubMedCrossRefGoogle Scholar
  40. Mousa S, Couri D (1983) Analysis of enkephalins, β-endorphin and small peptides in their sequences by highly sensitive high-performance liquid chromatography with electrochemical detection: implications in opioid peptide metabolism. J Chromatogr 267: 191–198PubMedCrossRefGoogle Scholar
  41. Pearse AGE (1978) Diffuse neuroendocrine system: peptides common to brain and intestine and their relationship to the APUD concept. In: Hughes J (ed) Centrally Acting Peptides. Macmillan, London, pp 49–57Google Scholar
  42. Pernow C (1983) Substance P. Pharmacol Rev 35: 85–141Google Scholar
  43. Polak JM, Bloom SR (1982) Peripheral regulatory peptides: a newly discovered control system. In: Fink G, Whalley LJ (eds) Neuropeptides: Basic and Clinical Aspects. Churchill Livingstone, Edinburgh, pp 118–147Google Scholar
  44. Smyth DG (1984) Chromatography of peptides related to β-endorphin. Analyt Biochem 136: 127–135PubMedCrossRefGoogle Scholar
  45. Sosa RP, McKnight AT, Hughes J, Kosterlitz HW (1977) Incorporation of labelled amino acids into the enkephalins. FEBS Lett 84: 195–198PubMedCrossRefGoogle Scholar
  46. Weber E, Esch FS, Bohlen P, Paterson SJ, Corbett AD, McKnight AT, Kosterlitz HW, Barchas JD, Evans C J (1983) Metorphamide: isolation, structure, and biological activity of an amidated opioid octapeptide from bovine brain. Proc Natl Acad Sci USA 80: 7362–7366PubMedCrossRefGoogle Scholar
  47. Weihe E, McKnight AT, Corbett AD, Hartschuh W, Reinecke M, Kosterlitz HW (1983) Characterization of opioid peptides in guinea-pig heart. Life Sci 33:suppl I, 711–714Google Scholar
  48. Weihe E, McKnight AT, Corbett AD, Kosterlitz HW (1983) Proeenkephalin- and prodynorphin-derived opioid peptides in guinea-pig heart. Neuropeptides 5: 453–456CrossRefGoogle Scholar
  49. White MW (1983) High-performance liquid chromatography of tyrosinerelated peptides with electrochemical detection. J Chromatogr 262: 420–425CrossRefGoogle Scholar
  50. Yalow RS (1978) Radioimmunoassay: a probe for the fine structure of biologic systems. Science 200: 1236–1245PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • A. T. McKnight
  • A. D. Corbett
  • S. J. Paterson
  • L. E. Robson
  • H. W. Kosterlitz

There are no affiliations available

Personalised recommendations