Receptor Physiology in Acute Heart Failure

  • G. G. Stanford
  • B. Chernow
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 6)


Acute heart failure is accompanied by many perturbations in the body’s homeostatic control system. The peripheral systems in the body are dependent on adequate heart function and when cardiac function is disturbed, these peripheral systems fail to function normally. The peripheral vascular system is an excellent example of this disordered response. When the peripheral vascular perfusion pressure falls as a result of cardiac pump failure, the peripheral receptor system interprets the fall to be the result of a decrease in the intravascular volume and initiates a chain of events which result in salt and water retention. This response may be a maladaptive reaction to stress and may worsen an already tenuous situation. The regulation of the peripheral vascular system is under the control of the sympathetic nervous system and in this chapter we examine this system and its derangements in heart failure.


Heart Failure Congestive Heart Failure Sympathetic Nervous System Adenylate Cyclase Adrenergic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guyton AC (1981) Textbook of medical physiology, 6th edn. Saunders, Philadelphia, p 719Google Scholar
  2. 2.
    Langer SZ, Shepperson NB (1982) Postjunctional alpha-1 and alpha-2 adrenoceptors: preferential innervation of alpha-1 adrenoceptors and the role of neuronal uptake. J Cardiovasc Pharmacol 4: S8 - S13PubMedCrossRefGoogle Scholar
  3. 3.
    Langer SZ, Shepperson NB (1982) Recent developments in vascular smooth muscle pharmacology: the postsynaptic alpha-2 adrenoceptor. Trends Pharmacol Sci 3: 440–444CrossRefGoogle Scholar
  4. 4.
    Pichler L, Kobinger W (1981) Centrally mediated cardiovascular effects of B-HT 920 (6allyl-2-amino-5, 6, 7, 8-tetrahydro-4H-thiozolo-(4, 5-d)-azepine dihydrochloride), a hypotensive agent of the “clonidine type.” J Cardiovasc Pharmacol 3: 269–277PubMedCrossRefGoogle Scholar
  5. 5.
    Fitz-Gerald GA, Watkins J, Dollery CT (1981) Regulation of norepinephrine release by peripheral alpha-2 receptor stimulation. Clin Pharmacol Ther 29: 160–167CrossRefGoogle Scholar
  6. 6.
    Reid JL, Wing LMH, Mathias CJ, Frankel HL, Neill E (1977) The central hypotensive effect of clonidine. Studies in tetraplegic subjects. Clin Pharmacol Ther 21: 375–381PubMedGoogle Scholar
  7. 7.
    Ruffolo RR Jr, Nichols AJ, Hieble JP (1988) Functions mediated by alpha-2-adrenergic receptors. In Limbird L (ed) The alpha-adrenergic receptors. Humana Press Clifton, NJ (in press)Google Scholar
  8. 8.
    Onesti G, Schwartz AB, Kim KE (1971) Antihypertensive effect of clonidine. Circ Res 28 (suppl 2): 53–69PubMedGoogle Scholar
  9. 9.
    Timmermans PB, Hoefke W, Stahle W, van Zwieten PA (1980) Structure-activity relationships in clonidine-like imidazolidines and related compounds. Prog Pharmacol 3: 1–104Google Scholar
  10. 10.
    Barajas L, Wang P (1979) Localization of tritiated norepinephrine in the renal arteriolar nerves. Anat Res 195: 525CrossRefGoogle Scholar
  11. 11.
    Ruffolo RR Jr (1988) Cardiovascular adrenoceptors: physiology and critical care implications. In: Chernow B, Zaritsy AL, Zaloga GP (eds) The pharmacologic approach to the critically ill patient. Williams & Wilkins Co, Baltimore, pp 166–183Google Scholar
  12. 12.
    Schmidz JM, Graham KM, Saglowsky A, Pettinger WA (1981) Renal alpha, and alpha2adrenergic receptors: biochemical and pharmacological correlations. J Pharmacol Exp Ther 219: 400–406Google Scholar
  13. 13.
    Drew GM, Whiting SB (1979) Evidence for two distinct types of postsynaptic alpha adrenoceptors in vascular smooth muscle in vivo. Br J Pharmacol 67: 207–215PubMedGoogle Scholar
  14. 14.
    Horn PT, Kohli JD, Listinsly JJ, Goldberg LI (1982) Regional variation in the alpha adrenergic receptors in the canine resistance vessels. Naunyn Schmiedeberg’s Arch Pharmacol 318: 166–172PubMedCrossRefGoogle Scholar
  15. 15.
    Hesse IFA, Johns EJ (1984) An in vivo study of the alpha adrenergic subtypes on the renal vasculature of the anesthestised rabbit. J Auton Pharmacol 4: 145–152PubMedCrossRefGoogle Scholar
  16. 16.
    Gilman AG (1984) Guanine nucleotide regulatory proteins and dual control of adenylate cyclase. J Clin Invest 73: 1–4PubMedCrossRefGoogle Scholar
  17. 17.
    Cohn JN, Levine TB, Olivari MM, et al (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive failure. N Engl J Med 311: 819–823PubMedCrossRefGoogle Scholar
  18. 18.
    Levine TB, Francis GS, Goldsmith SR (1982) Activity of the sympathetic nervous system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive failure. Am J Cardiol 49: 1659–1666PubMedCrossRefGoogle Scholar
  19. 19.
    Thomas JA, Marks BH (1978) Plasma norepinephrine in congestive heart failure. Am J Cardiol 41: 233–243PubMedCrossRefGoogle Scholar
  20. 20.
    Chidsey CA, Harrison DC, Braunwald E (1962) Augmentation of plasma norepinephrine response to exercise in patients with congestive heart failure. N Engl J Med 267: 650PubMedCrossRefGoogle Scholar
  21. 21.
    Goldstein DS (1981) Plasma norepinephrine as an indicator of sympathetic neural activity in clinical cardiology. Am J Cardiol 48: 1147PubMedCrossRefGoogle Scholar
  22. 22.
    Malliani A, Pagani M (1983) The role of the sympathetic nervous system in congestive heart failure. Eur Heart J 4 (Suppl A): 49PubMedGoogle Scholar
  23. 23.
    Bristow MR, Ginsburg R, Minobe W, et al (1982) Decreased catecholamine sensitivity and beta adrenergic-receptor density in failing human hearts. N Engl J Med 307: 205–211PubMedCrossRefGoogle Scholar
  24. 24.
    Bristow MR, Laser JA, Minobe W, Ginsburg R, Fowler MB, Rasmussen R (1984) Selective down-regulatin of betas-adrenergic receptors in the failing human heart (abstr.) Circulation 70 (suppl II): 67Google Scholar
  25. 25.
    Colucci WS, Alexander RW, Williams GH, et al (1981) Decreased lymphocyte beta adrenergic receptor density in patients with heart failure and tolerance to the beta adrenergic agonist pirbuterol. N Engl J Med 305: 185–190PubMedCrossRefGoogle Scholar
  26. 26.
    Gordon EP, Bristow MR, Laser JA, Minobe WA, Fowler MB, Savin WM (1983) Correlation between beta adrenergic receptors in human lymphocytes and heart (abstr.) Circulation 68 (suppl III): 99Google Scholar
  27. 27.
    Baumann G, Mercader D, Busch U, et al (1983) Effects of the H2-receptor agonist impromidine in human myocardium from patients with heart failure due to mitral and aortic valve disease. J Cardiovasc Pharmacol 5: 618–625PubMedCrossRefGoogle Scholar
  28. 28.
    Bristow MR (1984) Myocardial beta adrenergic receptor down regulation in heart failure. Int J Cardiol 5: 648–652PubMedCrossRefGoogle Scholar
  29. 29.
    Chidsey CA, Braunwald E, Morrow AG (1965) Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med 39: 442–451PubMedCrossRefGoogle Scholar
  30. 30.
    Chang HY, Klein RM, Junos G, et al. Selective desensitization of cardiac beta receptors by prolonged in vivo infusion of catecholamines in rats. J Pharmacol Exp Ther 221: 784–789Google Scholar
  31. 31.
    Weiss RJ, Tobes M, Wertz CE, Smith CB (1983) Platelet alpha2 adrenoceptors in chronic congestive heart failure. Am J Cardiol 52: 101–105PubMedCrossRefGoogle Scholar
  32. 32.
    Ruffolo RR Jr, Kopia GA (1986) Importance of receptor regulation in the pathophysiology and therapy of congestive heart failure. Am J Med 80 (Suppl 2B): 67–72PubMedCrossRefGoogle Scholar
  33. 33.
    Gaffney TE, Braunwald E (1963) Importance of the adrenergic nervous system in the support of circulatory function in patients with congestive heart failure. Am J Med 34: 320PubMedCrossRefGoogle Scholar
  34. 34.
    Epstein SE, Braunwald E (1966) The effect of beta adrenergic blockade on patterns of urinary sodium excretion: Studies in normal sujects and in patients with heart disease. Ann Intern Med 75: 20Google Scholar
  35. 35.
    Braunwald E (1984) Pathophysiology of heart failure. In: Braunwald E (ed) Heart disease: A textbook of cardiovascular medicine. Saunders, Philadelphia, pp 447–466Google Scholar
  36. 36.
    Higgins CB, Vatner SF, Franklin D, Braunwald E (1972) Effects of experimentally produced heart failure on the peripheral vascular response to severe exercise in conscious dogs. Circ Res 31: 186PubMedGoogle Scholar
  37. 37.
    Vanhoutte PM (1983) Adjustments in the peripheral circulation in chronic heart failure. Eur Heart J 4 (Suppl A): 186Google Scholar
  38. 38.
    Grassi G, Giannattasio C, Cuspidi C, et al (1988) Cardiopulmonary receptor regulation of renin release. Am J Med 84 (suppl 3A): 97–104PubMedCrossRefGoogle Scholar
  39. 39.
    Abboud FM, Thames MC, Mark AL (1981) Role of cardiac afferent nerves in regulation of circulation during coronary occlusion and heart failure. In: Abboud FM, Fozzard HA, Gilmore JP, Reis DJ (eds) Disturbances in neurogenic control of the circulation. Bethesda, MD: American Physiological Society, p 65Google Scholar
  40. 40.
    Belleau L, Mion H, Simard S, et al (1970) Studies on the mechanism of experimental congestive heart failure in dogs. Can J Physiol Pharmacol 48: 450PubMedCrossRefGoogle Scholar
  41. 41.
    Zehr JE, Hawe A, Tsakiris AG, Rastelli GC, McGoon DC, Segar WE (1971) ADH levels following nonhypotensive hemorrhage in dogs with chronic mitral stenosis. Am J Physiol 221: 312PubMedGoogle Scholar
  42. 42.
    Mancini DM, Le Jemtel TH, Factor S, Sonnenblick EH (1986) Central and peripheral components of cardiac failure. Am J Med 80 (Suppl 2B): 2–13PubMedCrossRefGoogle Scholar
  43. 43.
    Newman WH (1978) Volume overload heart failure: length-tension curves, and response to beta-agonists, Ca’, and glucagon. Am J Physiol 235: H690 - H700PubMedGoogle Scholar
  44. 44.
    Chernow B, Reed L, Geelhoed GW, et al (1986) Glucagon: Endocrine effects and calcium involvement in cardiovascular actions in dogs. Circ Shock 19: 393–407PubMedGoogle Scholar
  45. 45.
    Chernow B, Zaloga GP, Malcolm D, et al (1987) Glucagon’s chronotropic action is calcium dependent. J Pharm Exp Ther 241: 833–837Google Scholar
  46. 46.
    Zaloga GP, Willey S, Malcolm D, Chernow B, Holaday J (1988) Hypercalcemia attenuates the blood pressure response to epinephrine. J Pharm Exp Ther (in press)Google Scholar
  47. 47.
    Chernow B, Zaloga GP, McFadden E, et al (1982) Hypocalcemia in critically ill patients. Crit Care Med 10: 848–851PubMedCrossRefGoogle Scholar
  48. 48.
    Zaloga GP, Chernow B (1987) The multifactorial basis for hypocalcemia during sepsis. Ann Intern Med 107: 36–41PubMedGoogle Scholar
  49. 49.
    Zaloga GP, Willey S, Tomasic P, Chernow B (1987) Free fatty acids alter calcium binding: A cause for misinterpretation of serum calcium values and hypocalcemia in critical illness. J Clin Endocrinol Metab 64: 1010–1014PubMedCrossRefGoogle Scholar
  50. 50.
    Zaritsky AL, Chernow B (1983) Catecholamines, sympathomimetics. In: Chernow B, Lake CR (eds) The pharmacologic approach to the critically ill patient. Williams & Watkins, BaltimoreGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • G. G. Stanford
  • B. Chernow

There are no affiliations available

Personalised recommendations