Advertisement

Mechanism of Action of Vasodilating Agents

  • J. Biollaz
  • A. Munafo
  • T. Buclin
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 6)

Abstract

The development of heart failure is accompanied by the activation of neuroendocrine compensatory mechanisms (see chapter “Endocrine response to heart failure”). Although these responses are initially aimed at preserving cardiovascular homeostasis, they eventually lead to a further deterioration of myocardial performance due to excessive vasoconstriction and volume overloading. The treatment of severe heart failure has therefore three objectives: to increase myocardial contractility, to decrease venous return (preload) and to lower peripheral resistance (afterload). The last two objectives are the target of the therapy with vasodilators.

Keywords

Calcium Channel Blocker Angiotensin Converting Enzyme Inhibitor Systemic Vascular Resistance Acute Heart Failure Guanylate Cyclase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coupland S (1897) The year book of treatment for 1897. Lea Brother & Co, PhiladelphiaGoogle Scholar
  2. 2.
    Sarnoff SJ, Farr HW (1944) Spinal anesthesia in the therapy of pulmonary edema: a preliminary report. Anesthesiology 5: 1–6CrossRefGoogle Scholar
  3. 3.
    Johnson JB, Gross JF, Hale E (1957) Effects of sublingual administration of nitroglycerin on pulmonary-artery pressure in patients with failure of the left ventricle. N Engl J Med 257: 1114–1117PubMedCrossRefGoogle Scholar
  4. 4.
    Majid PA, Sharma B, Taylor SH (1971) Phentolamine for vasodilator treatment of severe heart-failure. Lancet 2: 719–724PubMedCrossRefGoogle Scholar
  5. 5.
    Ahlner J, Axelsson KL (1987) Nitrates. Mode of action at cellular level. Drugs 33 (suppl 4): 32–38PubMedCrossRefGoogle Scholar
  6. 6.
    Mittal CK, Murad F (1977) Properties and oxidative regulation of guanylate cyclase (mini-review) J Cyclic Nucleotide Research 3: 381–391Google Scholar
  7. 7.
    Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39: 163–196PubMedGoogle Scholar
  8. 8.
    Needleman P, Jakschik B, Johnson EM Jr (1973) Sulphydryl requirements for relaxation of vascular smooth muscle. J Pharm Exp Ther 187: 324–331Google Scholar
  9. 9.
    May DC, Popma JJ, Black WH, et al (1987) In vivo induction and reversal of nitroglycerin tolerance in human coronary arteries. N Eng J Med 317: 805–809CrossRefGoogle Scholar
  10. 10.
    Parker J, Farrel B, Lahey KA, Moe G (1987) Effect of intervals between doses on the development of tolerance to isosorbide dinitrate. N Engl J Med 316: 1440–1444PubMedCrossRefGoogle Scholar
  11. 11.
    Winniford MD, Kennedy PL, Wells PJ, Hillis LD (1986) Potentiation of nitroglycerin-induced coronary dilatation by N-acetylcysteine. Circulation 73: 138–142PubMedCrossRefGoogle Scholar
  12. 12.
    Abdollah A, Moffat JA, Armstrong PW (1987) N-acetylcysteine does not modify nitroglycerin-induced tolerance in canine vascular ring. J Cardiovasc Pharmacol 9: 445–450PubMedCrossRefGoogle Scholar
  13. 13.
    Gruetter CA, Lemke SM (1985) Dissociation of cysteine and gluthatione levels from nitroglycerin induced relaxation. Eur J Pharmacol 111: 89–95CrossRefGoogle Scholar
  14. 14.
    Rapoport RM, Draznin MB, Murad F (1982) Sodium nitroprusside-induced protein phophorylation in intact rat aorta is mimicked by 8-bromo-cyclic GMP. Proc Natl Acad Sci (USA) 79: 6470–6474CrossRefGoogle Scholar
  15. 15.
    Rapoport RM (1986) Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phophatidylinositol hydrolysis in rat aorta. Circ Res 58: 407–410PubMedGoogle Scholar
  16. 16.
    Packer M (1985) Mechanisms of nitrate action in patients with severe left ventricular failure: conceptual problems with the theory of venosequestration. Am Heart J 110: 259–264PubMedCrossRefGoogle Scholar
  17. 17.
    Imhof PR, Ott B, Frankhauser P, Chu LC, Hodler J (1980) Difference in nitroglycerin dose-response in the venous and arterial beds. Eur J Clin Pharmacol 18: 455–460PubMedCrossRefGoogle Scholar
  18. 18.
    Goy JJ, Waeber B, Nussberger J, et al (1988) Infusion of atrial natriuretic peptide to patients with congestive heart failure. J Cardiovasc Pharmacol (in press)Google Scholar
  19. 19.
    Fluckiger JP, Waeber B, Matsueda G, Delaloye B, Nussberger J, Brunner HR (1986) Effect of atrium-peptin III on hematocrit and volemia of nephrectomized rats. Am J Physiol 271: H880 - H883Google Scholar
  20. 20.
    Winquist RJ, Faison EP, Nutt RF (1984) Vasodilator profile of synthetic atrial natriuretic factor. Eur J Pharmacol 102: 169–173PubMedCrossRefGoogle Scholar
  21. 21.
    Packer M, Meller J, Medina N, Yurhak M, Gorlin R (1981) Provocation of myocardial ischemic events during initiation of vasodilator therapy for severe chronic heart failure. Am J Cardiol 48: 939–946PubMedCrossRefGoogle Scholar
  22. 22.
    Taylor SH, Sutherland GR, MacKenzie GJ, et al (1965) The circulating effects of intravenous phentolamine in man. Circulation 31: 741–754PubMedGoogle Scholar
  23. 23.
    Colucci WS (1982) Alpha-adrenergic receptor blockade with prazosin. Ann Intern Med 97: 67–77PubMedGoogle Scholar
  24. 24.
    Kramer GL, Hardman JG (1980) Cyclic nucleotides and blood vessel contraction. In: Bohr DF, Somlyo A, Sparks HV Jr (eds) Handbook of physiology, Vol 2: The cardiovascular system. American Physiological Society, Bethesda, MD, pp 179–199Google Scholar
  25. 25.
    Vallet B, Molla A, Demaille JG (1980) Cyclic adenosine 3’,5’-monophosphate-dependent regulation of purified bovine aortic calcium-calmodulin-dependent myosin light chain kinase. Biochim Biophys Acta 674: 256–264CrossRefGoogle Scholar
  26. 26.
    Pearl RG, Rosenthal MH, Murad F, Ashton JPA (1984) Aminophylline potentiates sodium nitroprusside-induced hypotension in the dog. Anesthesiology 61: 712–715PubMedCrossRefGoogle Scholar
  27. 27.
    Braunwald E (1982) Mechanism of action of calcium-channel-blocking agents. N Engl J Med 307: 1618–1627PubMedCrossRefGoogle Scholar
  28. 28.
    Ratz PH, Flaim SF (1982) Species and blood vessels specificity in the use of calcium for contraction. In: Flaim SF, Zelis R (eds) Calcium Blockers: Mechanisms of action and clinical applications. Urban & Schwarzenberg, Baltimore Munich, pp 77–98Google Scholar
  29. 29.
    Brooks N, Cattell M, Pidgeon J, Balcon R (1980) Unpredictable response to nifedipine in severe heart failure. Br Med J 281: 1324PubMedCrossRefGoogle Scholar
  30. 30.
    Dzau VJ, Hollenberg NK, Williams GH (1983) Neurohormonal mechanisms of heart failure: role in pathogenesis, therapy, and drug tolerance. Fed Proc 42: 3162–3169PubMedGoogle Scholar
  31. 31.
    Cohn JN (1966) Relationship of plasma volume changes to resistance and capacitance vessel effects of sympathomimetic amines and angiotensin in man. Clin Sci 30: 267PubMedGoogle Scholar
  32. 32.
    Awan NA, Evenson MK, Needham KE, et al (1981) Efficacy of oral angiotensin-converting enzyme inhibition with captopril therapy in severe chronic normotensive congestive heart failure. Am Heart J 101: 22–31PubMedCrossRefGoogle Scholar
  33. 33.
    Aubert JF, Waeber B, Nussberger J, Vavrek R, Stewart JM, Brunner HR (1988) Influence of endogenous bradykinin on acute blood pressure response to vasopressors in normotensive rats assessed with a bradikinin antagonist. J Cardiovasc Pharmacol 11: 51–55PubMedCrossRefGoogle Scholar
  34. 34.
    Schwartz SL, Williams GH (1982) Angiotensin-converting enzyme inhibition and prostaglandins. Am J Cardiol 49: 1405–1409CrossRefGoogle Scholar
  35. 35.
    Lis Y, Bennett D, Lambert G, Bobson D (1984) A preliminary double-blind study of intravenous nitroglycerin in acute myocardial infarction. Intensive Care Med 10: 179–184PubMedCrossRefGoogle Scholar
  36. 36.
    Fahmy NR, Gavras HR (1985) Impact of captopril on hemodynamic and humoral effects of nitroprusside. J Cardiovasc Pharmacol 7: 869–874PubMedCrossRefGoogle Scholar
  37. 37.
    Smith RD, Tessman DK, Kaplan HR (1981) Acute tolerance of prazosin in conscious hypertensive rats: involvement of the renin-angiotensin system. J Pharmacol Exp Ther 217: 397–405PubMedGoogle Scholar
  38. 38.
    Sinoway L, Minotti J, Musch T, et al (1987) Enhanced metabolic vasodilation secondary to diuretic therapy in decompensated congestive heart failure secondary to coronary artery disease. Am J Cardiol 60: 107–111PubMedCrossRefGoogle Scholar
  39. 39.
    Woosley RL, Echt DS, Roden DM (1986) Effects of congestive heart failure on the pharmacokinetics and pharmacodynamics of antiarrhythmic agents. Am J Cardiol 57: 25B - 33BPubMedCrossRefGoogle Scholar
  40. 40.
    Baughman RA Jr, Arnold S, Benet LZ, Lin ET, Chatterjee K, Williams RL (1980) Altered prazosin pharmacokinetics in congestive heart failure. Eur J Clin Pharmacol 17: 425–428PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Biollaz
  • A. Munafo
  • T. Buclin

There are no affiliations available

Personalised recommendations