Influence of Oxidative Stress on Metabolic and Contractile Functions of Arterial Smooth Muscle

  • H. Heinle


Since the highest oxygen pressure within the body is found in oxygenated arterial blood, the vascular tissue of the arteries is under permanent oxidative attack. Besides the important function of oxygen in the energy-providing metabolism of mitochondria, there are several other pathways in the cells which are influenced either directly by oxygen or by its derivatives, i. e., superoxide anion, hydroxyl radical, H2O2, etc. (for review see Halliwell 1978; Chance et al. 1979; Del Maestro 1980; Fridovich 1983). These reactive compounds must be considered normal metabolites in aerobic life.


Vascular Smooth Muscle Glycogen Phosphorylase Thiol Content Glutathione Disulfide Arterial Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59 606–718PubMedGoogle Scholar
  2. Chance B, Sies H, Boveries A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527–605PubMedGoogle Scholar
  3. Christensen HJ, Østgaard SE, Andreasen G (1982) The influence of PO2 pH, and albumin on the in vitro contraction of vascular smooth muscle. J Pharmacol Method 8: 99–108CrossRefGoogle Scholar
  4. Coburn RF, Eppinger R, Scott DP (1986) Oxygen-dependent tension in vascular smooth muscle. Circ Res 58: 341–347PubMedCrossRefGoogle Scholar
  5. Del Maestro RF (1980) An approach to free radicals in medicine and biology. Acta Physiol Scand [Suppl] 492:153–168Google Scholar
  6. Fridovich I (1983) Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 23: 239–257PubMedCrossRefGoogle Scholar
  7. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376PubMedCrossRefGoogle Scholar
  8. Gagelmann M, Mrwa U, Bostrum S, Rüegg JC, Hartshorne D (1984) Effect of Ca2+-independent myosin light chain kinase on different skinned smooth muscle fibers. Pflugers Arch 401: 107–109PubMedCrossRefGoogle Scholar
  9. Halliwell B (1978) Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: the key role of superoxide dismutase. Cell Biol Int Rep 2: 13–128CrossRefGoogle Scholar
  10. Hartshorne DJ, Gorecka A (1980) Biochemistry of the contractile proteins of smooth muscle. In: Bohr DF et al. (eds) Vascular smooth muscle. Am Physiol Soc, Bethesda, pp 93–120 (Handbook of physiology, sect II, vol II)Google Scholar
  11. Heinle H (1979a) The degree of glutathione oxidation in excised aortic tissues of rats and rabbits. Hoppe-Seyler’s Z Physiol Chem 360: 113–1116Google Scholar
  12. Heinle H (1979b) The specific activities of glutathione peroxidase and glutathione reductase in homogenates of aortic segments of the rat. Hoppe-Seiler’s Z Physiol Chem 360: 1157Google Scholar
  13. Heinle H (1982) Peroxide-induced activation of glycogen phosphorylase a activity in vascular smooth muscle. Biochem Biophys Res Commun 107: 597–601PubMedCrossRefGoogle Scholar
  14. Heinle H (1984) Vasoconstrictions of carotid artery induced by hydroperoxides. Arch Int Physiol Biochim 92:13–17PubMedCrossRefGoogle Scholar
  15. Heinle H (1985) Stoffwechseländerungen der Gefäßwand bei experimenteller Atherosklerose. Habilitationsschrift, Medizinische Fakultät, TübingenGoogle Scholar
  16. Holubarsch Ch, Takeda N, Heinle H (1985) Die H2O2-Kontraktur des Rattenmyokards – Vergleich mit Kaliumchlorid (KC1) und hypoxischer Kontraktur. Z Kardiol 74: 82Google Scholar
  17. Hyslop PA, Hinshaw DB, Schraufstätter IU, Sklar LA, Spragg RG, Cochrane ChG (1986) Intracellular calcium homeostasis during hydrogen peroxide injury to cultured P388D1 cells. J Cell Physiol 129: 356–366PubMedCrossRefGoogle Scholar
  18. Jocelyn PC (1972) Biochemistry of the SH group; the occurrence, chemical properties, metabolism and biological function of thiols and disulphides. Academic, LondonGoogle Scholar
  19. Kamm KE, Stull ZT (1985) The function of myosin light chain kinase phosphorylation of smooth muscle. Annu Rev Pharmacol Toxicol 25: 593–620PubMedCrossRefGoogle Scholar
  20. Kling D, Heinle H (1986) Charakterisierung aktiver und passiver mechanischer Eigenschaften von Arterien und Venen. In: Hoffmeister HE (ed) Reagibilitat der arteriellen und venosen Strombahn. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 9–13Google Scholar
  21. Lindner V, Heinle H (1987) Does the xanthine-xanthine oxidase system alter contractile behavior of vascular smooth muscle? Pflugers Arch 408: 204–206PubMedCrossRefGoogle Scholar
  22. Lötscher HR, Winterhalter KH, Carafoli E, Richter Ch (1979) Hydroperoxides can modulate the redox state of pyridine nucleotides and the calcium balance in rat liver mitochondria. Proc Natl Acad Sci USA 76: 4340–4344PubMedCrossRefGoogle Scholar
  23. Orrenius S, Jewell SA, Bellomo G, Thor H, Jones DP, Smith MT (1983) Regulation of calcium compartmentation in the hepatocyte - a critical role of glutathione. In: Larsson A et al. (eds) Functions of glutathione: biochemical, physiological, toxicological and clinical aspects. Raven, New York, pp 261–271Google Scholar
  24. Proctor KG, Duling BR (1982) Oxygen-derived free radicals and local control of striated muscle blood flow. Microvasc Res 24: 77–86PubMedCrossRefGoogle Scholar
  25. Rapoport RM (1986) Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ Res 58: 407–410PubMedCrossRefGoogle Scholar
  26. Rembold ChM, Murphy RA (1986) Myoplasmic calcium, myosin phosphorylation, and regulation of the cross-bridge cycle in swine arterial smooth muscle. Circ Res 58: 803–815PubMedCrossRefGoogle Scholar
  27. Rubanyi G, Paul RJ (1985) Two distinct effects of oxygen on vascular tone in isolated porcine coronary arteries. Circ Res 56: 1–10PubMedCrossRefGoogle Scholar
  28. Rubanyi GM, Vanhoutte PM (1986a) Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Am J Physiol 250: H815–H821PubMedGoogle Scholar
  29. Rubanyi GM, Vanhoutte PM (1986b) Superoxide anions and hyperoxia inactivate endotheliumderived relaxing factor. Am J Physiol 250: H822–H827PubMedGoogle Scholar
  30. Sasaki T, Wakai S, Asano T, Watanabe T, Kirino T, Sano K (1981) The effect of a lipid hydroperoxide of arachidonic acid on the canine basilar artery. J Neurosurg 54: 357–365PubMedCrossRefGoogle Scholar
  31. Schwartz-Sørensen S, Christensen F, Clausen T (1980) The relationship between the transport of glucose and cations across cell membranes in isolated tissues. Biochim Biophys Acta 602: 433–445CrossRefGoogle Scholar
  32. Sies H, Graf P, Estrela JM (1981) Hepatic calcium efflux during cytochrome P-450-dependent drug oxidations at the endoplasmic reticulum in intact liver. Proc Natl Acad Sci USA 78: 3358–3362PubMedCrossRefGoogle Scholar
  33. Sies H, Gerstenecker C, Summer KH, Menzel H, Flohé L (1974) Glutathione-dependent hydroperoxide metabolism and associated metabolic transitions in hemoglobin-free perfused rat liver. In: Flohé L et al. (eds) Glutathione. Thieme Stuttgart, pp 261–276Google Scholar
  34. Sparks HV (1980) Effects of local metabolic factors on vascular smooth muscle. In: Bohr DF et al. (eds) Vascular smooth muscle. Am Physiol Society, Bethesda, pp 475–513 (Handbook of Physiology, Sect II vol II)Google Scholar
  35. Stewart RM, Weir EK, Montgomery MR, Niewoehner DE (1981) Hydrogenperoxide contracts airway smooth muscle: a possible endogenous mechanism. Respir Physiol 45: 333–342PubMedCrossRefGoogle Scholar
  36. Thomas G, Ramwell P (1986) Induction of vascular relaxation by hydroperoxides. Biochem Biophys Res Commun 139: 102–108PubMedCrossRefGoogle Scholar
  37. Trimm JL, Salama G, Abramson JJ (1986) Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles. J Biol Chem 261:16092–16099PubMedGoogle Scholar
  38. Usami M, Matsushita H, Shimazu T (1980) Regulation of liver phosphorylase phosphatase by glutathione disulfide. J Biol Chem 255:1928–1931PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • H. Heinle
    • 1
  1. 1.Physiological Institute (I)TübingenGermany

Personalised recommendations