Advertisement

Symmetry Breaking—A Second Look

  • Ganesan Venkataraman
  • Debendranath Sahoo
  • Venkataraman Balakrishnan
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 84)

Abstract

Several years ago, Pauling and Hayward [9.1] presented a very interesting study of the architecture of molecules. We are here interested in the next stage, the architecture of the condensed state—i.e., the macroscopic structures that can be built out of large collections of atoms or molecules. The phases of condensed matter may be regarded as arising from an attempt to fill space homogeneously with given elementary entities, subject to certain constraints arising from basic physical principles. This leads to the wide variety of phases one observes in matter in the condensed state.

Keywords

Symmetry Breaking Isotropy Subgroup Euclidean Group Irreducible Representation Elementary Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 9.2
    H. S. M. Coxeter: Introduction to Geometry ( Wiley, New York 1969 )MATHGoogle Scholar
  2. 9.3
    N. J A. Sloane: Sci. Am. 250/1 92 (1984)Google Scholar
  3. 9.4
    G. Ya. Lyubarskii: The Application of Group Theory in Physics ( Pergamon, New York 1960 )Google Scholar
  4. 9.5
    T. S. Lomont: Applications of Finite Groups ( Academic, New York 1959 )MATHGoogle Scholar
  5. 9.6
    L. Michel: Rev. Mod. Phys. 52, 617 (1980)ADSCrossRefGoogle Scholar
  6. 9.7
    D. Kastler, G. Loupias, M. Mebkhout, L. Michel: Commun. Math. Phys. 27, 195 (1972)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 9.8
    L. Michel: In Symmetries and Broken Symmetries, ed. by N. Boccara ( Idset, Paris 1981 ) p. 21Google Scholar
  8. 9.9
    I. Dzyaloshinskii: In Symmetries and Broken Symmetries, ed. by N. Boccara ( Idset, Paris 1981 ) p. 29Google Scholar
  9. 9.10
    H. A. Kramers: Proc. Acad. Amsterdam 33, 959 (1930)Google Scholar
  10. 9.11
    E. P. Wigner: Goett. Nachr. Math. Phys. 31, 546 (1932)Google Scholar
  11. 9.12
    L. D. Landau: In Collected Papers of L. D. Landau, ed. by D. Ter Haar ( Pergamon, London 1965 ) p. 193Google Scholar
  12. 9.13
    F. H. Busse: In Pattern Formation by Dynamical Systems, ed. by H. Haken, Springer Ser. Syn., Vol. 5 (Springer, Berlin, Heidelberg 1979 ) p. 56Google Scholar
  13. 9.14
    P. Berge: In Chaos and Order in Nature, Springer Ser. Syn., Vol. 11 (Springer, Berlin, Heidelberg 1981 ) p. 14Google Scholar
  14. 9.15
    R. E. Rosensweig: In Evolution of Order and Chaos, ed. by H. Haken, Springer Ser. Syn., Vol. 17 (Springer, Berlin, Heidelberg 1982 ) p. 52Google Scholar
  15. 9.16
    D. H. Sattinger: Group Theoretic Methods in Bifurcation Theory, Lecture Notes Math. 762 ( Springer, Berlin, Heidelberg 1979 )Google Scholar
  16. 9.17
    N. Rivier, R. Occelli, J. Pantaloni, A. Lissouwski: J. Physique 45, 49 (1984)Google Scholar
  17. 9.18
    J. Friedel: In Symmetries and Broken Symmetries, ed. by N. Boccara ( Idset, Paris 1981 ) p. 197Google Scholar
  18. 9.1
    L. Pauling, R. Hayward: Architecture of Molecules ( Freeman, San Francisco 1964 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Ganesan Venkataraman
    • 1
  • Debendranath Sahoo
    • 2
  • Venkataraman Balakrishnan
    • 3
  1. 1.ANURAG, Defence Research & Development OrganisationRCI POHyderabadIndia
  2. 2.Indira Gandhi Centre for Atomic ResearchKalpakkamIndia
  3. 3.Department of PhysicsIndian Institute of TechnologyKalpakkamIndia

Personalised recommendations