Research on Inverse Problems in Materials Science and Engineering

  • S. J. Norton
  • J. A. Simmons
  • A. H. Kahn
  • H. N. G. Wadley
Part of the NATO ASI Series book series (volume 44)


The role of inverse problems in the characterization of materials is discussed. Four such problems are described in detail: deconvolution for acoustic emission, tomographic reconstruction of temperature distribution, electrical-conductivity profiling and inverse scattering. Each exploits a priori information in a different way to mitigate the ill-conditioning inherent in most inverse problems.


Inverse Problem Acoustic Emission Acoustic Emission Signal Tomographic Reconstruction Conductivity Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simmons, J. A.: New methods for deconvolution and signature analysis of causal and transient time series. To be published.Google Scholar
  2. 2.
    Wadley, H. N. G., Norton, S. J., Mauer, F., and Droney, B.: Ultrasonic measurement of internal temperature distribution, Phil. Trans. R. Soc. Lond. A 320, 341–361 (1986).CrossRefGoogle Scholar
  3. 3.
    Kahn, A. H., Long, K. R., Ryckebusch, S., Hsieh, T., and Testardi, L. R.: Determination of electrical conductivity profiles from frequency-sweep eddy current measurement. Review of Progress in Quantitative Nondestructive Evaluation, Vol. 5B, Thompson, D. O., and Chimenti, D. E., eds., pp. 1383–1391 (1986).Google Scholar
  4. 4.
    Norton, S. J.: Iterative seismic inversion, Geophys. J. Roy. astr. Soc (submitted).Google Scholar
  5. 5.
    Tikhonov, A. N.: Solution of incorrectly formulated problems and the regularization method, Sov. Math. Dokl. 4, 1035–1038 (1963).Google Scholar
  6. 6.
    O’Leary, D. P., and Simmons, J. A.: A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems, Siam. J. Sci. Stat. Comput. 2, 474–489 (1981).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Weidelt, Z., Geophysik: The inverse problem of geomagnetic induction 38, 257–289 (1972).Google Scholar
  8. 8.
    Parker, R. L.: The inverse problem of electromagnetic induction: existence and construction of solutions based on incomplete data, J. Geophys. Res. 85, 4421–4428 (1980).CrossRefGoogle Scholar
  9. 9.
    Parker, R. L. and Whaler, K. A.: Numerical methods for establishing solutions to the inverse problem of electromagnetic induction, J. Geophys. Res. 88, 9574–9584 (1981).CrossRefGoogle Scholar
  10. 10.
    Kahn, A. H., and Spal, R.: Eddy current characterization of materials and structures, ASTM Special Tech. Publ. 722, Birnbaum, G., and Free, G., eds., American Society for Testing and Materials, pp. 298–307 (1981).Google Scholar
  11. 11.
    Tarantola, A.: Inversion of seismic reflection data in the acoustic approximation, Geophysics 49, 1259–1266 (1984).CrossRefGoogle Scholar
  12. 12.
    Fawcett, J.: Two dimensional velocity inversion of the acoustic wave equation, Wave Motion 7, 503–513 (1985).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Nowack, R. L., and Aki, K.: Iterative inversion for velocity using waveform data, Geophys. J. R. astr. Soc. 87, 701–730 (1986).Google Scholar
  14. 14.
    Weston, V. H.: Nonlinear approach to inverse scattering, J. Math. Phys. 20, 53–59 (1979).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Luenberger, D. G.: Linear and Nonlinear Programming, 2nd Ed., New York: Addison-Wesley 1984.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • S. J. Norton
    • 1
  • J. A. Simmons
    • 1
  • A. H. Kahn
    • 1
  • H. N. G. Wadley
    • 1
  1. 1.Institute for Materials Science and EngineeringNational Bureau of Standards GaithersburgUSA

Personalised recommendations