Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The skin lies within the primary treatment field of radiotherapy more often than any other normal tissue. Its radiation response is immediately obvious. Before megavoltage radiotherapy was introduced, skin tolerance limited the radiation dose that could be achieved in the tumor and, thus, overall treatment results in radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Barwari SE, Potten CS (1976) Regeneration and dose- response characteristics of irradiated mouse dorsal epidermal cells. Int J Radiat Biol 30: 201–216

    CAS  Google Scholar 

  • Al-Soufi A, Lemperle G, Exner K (1986) Plastic surgical procedures for the closure of radiation ulcers of the thoracic and pelvic regions. Br J Radiol [Suppl 19]: 134–137

    Google Scholar 

  • Ang KK, Landuyt W, Riunders B, Van Der Schueren E (1984) Differences in repopulation kinetics in mouse skin during split course multiple fractions per day (MFD) or daily fractionated irradiations. Int J Radiat Oncol Biol Phys 10: 95–99

    PubMed  CAS  Google Scholar 

  • Arcangeli G, Friedman M, Paoluzi R (1974) A quantitative study of late radiation effect on human skin and subcutaneous tissues in human beings. Br J Radiol 47: 44–50

    PubMed  CAS  Google Scholar 

  • Archambeau JO, Bennett GW, Abata JJ, Brenneis HJ (1979) Response of swine skin to acute single exposures of x-rays: quantification of the epidermal cell changes. Radiat Res 79: 298–337

    PubMed  CAS  Google Scholar 

  • Archambeau JO, Hauser D, Shymko RM (1988) Swine basal cell proliferation during a course of daily irradiation, five days a week for six weeks (6000 rad). Int J Radiat Oncol Biol Phys 15: 1383–1388

    PubMed  CAS  Google Scholar 

  • Aristizabal SA, Miller RC, Schlichtemeier AL, Jones SE, Boone ML (1977) Adriamycin irradiation: cutaneous complications. Int J Radiat Oncol Biol Phys 2: 325–331

    PubMed  CAS  Google Scholar 

  • Arlett CF, Cole J, Green MHL (1989) Radiosensitive individuals in the population. In: Low Dose Radiation, Taylor and Francis, London

    Google Scholar 

  • Atkins HL, Fairchild RG, Robertson JS (1972) Dose-rate effects on RBE of californium and radium reactions in pig skin. Radiology 103: 439–442

    PubMed  CAS  Google Scholar 

  • Baker DG, Leith JL (1977) Effect of dose rate on production of early and late radiation damage in mouse skin. Int J Radiat Oncol Biol Phys 2: 69–7

    PubMed  CAS  Google Scholar 

  • Bates TD (1975) A prospective clinical trial of postoperative radiotherapy delivered in three fractions per week versus two fractions per week in breast carcinoma. Clin Radiol 26: 297–304

    PubMed  CAS  Google Scholar 

  • Bates TD, Peters LJ (1975) Dangers of the clinical use of the NSD formula for small fraction numbers. Br J Radiol 48: 773

    PubMed  CAS  Google Scholar 

  • Bentzen SM, Christensen JJ, Overgaard J, Overgaard M (1987) Some methodological problems in estimating radiobiological parameters from clinical data. Acta Oncol 27: 105–116

    Google Scholar 

  • Berry RJ, Wiernik G, Patterson TJS (1974a) Skin tolerance to fractionated x-irradiation in the pig — how good a predictor is the NSD formula? Br J Radiol 47: 185–190

    PubMed  CAS  Google Scholar 

  • Berry RJ, Wiernik G, Patterson TJS, Hopewell JW (1974b) Excess late cutaneous fibrosis after irradiation of pig skin, consequent upon the application of the NSD formula. Br J Radiol 47: 277–281

    PubMed  CAS  Google Scholar 

  • Bewley DK, Fowler J, Morgan RI, Silvester JL, Turner BA (1963) Experiments on the skin of pigs with fast neutrons and 8 MeV x-rays, including some effects of dose fractionation. Br J Radiol 36: 107–115

    Google Scholar 

  • Bewley DK, Field SB, Morgan RL, Page BC, Parnell CJ (1967) The response of pig skin to fractionated treatments with fast neutrons and x-rays. Br J Radiol 40: 745–770

    Google Scholar 

  • Birkner R, Hoffmann B (1961) Unterhautindurationen nach Telekobalttherapie. Strahlentherapie 116: 463–477

    PubMed  CAS  Google Scholar 

  • Borak J (1936) The radiation biology of the cutaneous glands. Radiology 27: 651–655

    CAS  Google Scholar 

  • Borak J (1937) Spätergebnisse der fraktionierten Lang- bestrahlungsmethode. Strahlentherapie 58: 585–594

    Google Scholar 

  • Brennan D, Young CMA, Hopewell JW, Wiernik G (1976) The effects of varied numbers of dose fractions on the tolerance of normal human skin. Clin Radiol 27: 27–32

    PubMed  CAS  Google Scholar 

  • Brown JM, Probert JC (1973) Long-term recovery of connective tissue after irradiation. Radiology 108: 205–207

    PubMed  CAS  Google Scholar 

  • Brown JM, Probert JC (1975) Early and late radiation changes following a second course of irradiation. Radiology 115: 711–716

    PubMed  CAS  Google Scholar 

  • Chaplin DJ, Douglas BG, Gruslkey W, Skarsgard LD, Lam G, Denekamp J (1987) The response of mouse epidermis to fractionated doses of π-mesons. Int J Radiat Oncol Biol Phys 13: 1199–1208

    PubMed  CAS  Google Scholar 

  • Chen F, Hendry JH (1988) Re-irradiation of mouse skin: similarity of dose reductions for healing and macrocolony endpoints. Radiother Oncol 11: 153–159

    PubMed  CAS  Google Scholar 

  • Choi CH, Suit HD (1975) Evaluation of rapid radiation treatment schedules utilizing two treatment sessions per day. Radiology 116: 703–707

    PubMed  CAS  Google Scholar 

  • Chu FCH, Conrad JT, Glicksman AS, Nickson JJ (1960) Quantitative and qualitative evaluation of skin erythema. I. Technic of measurement and description of the reaction. Radiology 75: 406–415

    PubMed  CAS  Google Scholar 

  • Chu FCH, Glicksman AS, Nickson JJ (1970) Late consequences of early skin reactions. Radiology 94: 669–672

    PubMed  CAS  Google Scholar 

  • Coggle, JE, Hansen, LS, Wells, I, Charles, MW (1984) Nonstochastic effects of different energy β emitters on the mouse skin. Radiat, Res 99: 336–345

    CAS  Google Scholar 

  • Cohen L (1949a) Clinical radiation dosage. Br J Radiol 22: 160–163

    PubMed  CAS  Google Scholar 

  • Cohen L (1949b) Clinical radiation dosage. II. Interrelation of time, area and therapeutic ratio. Br J Radiol 22: 706–713

    PubMed  CAS  Google Scholar 

  • Cohen L, Scott MJ (1968) Fractionation procedures in radiation therapy: a computerised approach to evaluation. Br J Radiol 41: 529–533

    PubMed  CAS  Google Scholar 

  • Cohen L, Ubaldi SE (1977) Dose time relationships for post-irradiation cutaneous telangiectasia. Int J Radiat Oncol Biol Phys 2: 421–426

    PubMed  CAS  Google Scholar 

  • Cottier H (1966) Histopathologie der Wirkung ionisierender Strahlen auf höhere Organismen (Tier und Mensch). In: Zuppinger A (ed) Strahlenbiologie 2. Springer, Berlin Heidelberg New York (Handbuch der medizinischen Radiologie, Vol II/2, pp 35–272)

    Google Scholar 

  • Coutard H (1932) Roentgentherapy of epitheliomas of the tonsillar region, hypopharynx and larynx from 1920 to 1929. AJR 103: 313–331, 343–348

    Google Scholar 

  • Cram RW, Weder CH, Watson TA (1958) Tolerance of skin grafts to radiation; study of postmastectomy irradiated grafts. Ann Surg 149: 65–67

    Google Scholar 

  • D’Angio GJ, Farber S, Maddock CL (1959) Potentiation of x-ray effects by actinomycin D. Radiology 73: 175–177

    PubMed  Google Scholar 

  • Denekamp J (1973) Changes in the rate of repopulation during multifractionation irradiation of mouse skin. Br J Radiol 46: 381–387

    PubMed  CAS  Google Scholar 

  • Denekamp J (1975) Residual radiation damage in mouse skin 5 to 8 months after irradiation. Radiology 115: 191–195

    PubMed  CAS  Google Scholar 

  • Denekamp J (1977) Early and late radiation reactions in mouse feet. Br J Cancer 36: 322–329

    PubMed  CAS  Google Scholar 

  • Denekamp J, Harris SR (1975) The response of mouse skin to multiple small doses of radiation. In: Alper T (ed) Cell survival after low doses of radiation. Wiley, London

    Google Scholar 

  • Denekamp J, Stewart FA (1979) Evidence for repair capacity in mouse tumors relative to skin. Int J Radiat Oncol Biol Phys 5: 2003–2010

    PubMed  CAS  Google Scholar 

  • Denekamp J, Ball MM, Fowler JF (1969) Recovery and repopulation in mouse skin as a function of time after X-irradiation. Radiat Res 37: 361–370

    PubMed  CAS  Google Scholar 

  • Denekamp J, Stewart FA, Douglas BG (1976) Changes in the proliferation rate of mouse epidermis after irradiation: continuous labelling studies. Cell Tissue Kinet 9: 19–29

    PubMed  CAS  Google Scholar 

  • Devik F (1951) Histological and cytological changes produced by A-particles in the skin of mice. Acta Radiol 35: 149–155

    Google Scholar 

  • Douglas BG (1982) Implications of the quadratic cell survival curve and human skin radiation ‘tolerance doses’ on fractionation and superfractionation dose selection. Int J Radiat Oncol Biol Phys 8: 1135–1142

    PubMed  CAS  Google Scholar 

  • Douglas BG, Fowler JF (1976) The effect of multiple small doses of x-rays on skin reactions in the mouse and a basic interpretation. Radiat Res 66: 401–426

    PubMed  CAS  Google Scholar 

  • Douglas BG, Grulkey WR, Chaplin DJ, Lam G, Skarsgard LD, Denekamp J (1986) Pions and pig skin: preclinical evaluation of RBE for early and late damage. Int J Radiat Oncol Biol Phys 12: 221–229

    PubMed  CAS  Google Scholar 

  • Durrant KR, Young MCA, Hopewell JW (1977) Effects of variation of overall treatment time on the radiation response of normal human skin. Radiobiological research and radiotherapy, vol I. IAEA, Vienna, pp 21–28

    Google Scholar 

  • Dutreix J, Wambersie A, Bounik C (1973) Cellular recovery in human skin reactions: application to dose, fraction number, overall time relationship in radiotherapy. Eur J Cancer 9: 159–167

    PubMed  CAS  Google Scholar 

  • Ehring F, Honda M (1967) Das Basalzellkarzinom auf röntgenbelasteter Haut. Strahlentherapie 133: 198–207

    PubMed  CAS  Google Scholar 

  • Elkind MM, Sutton H (1960) Radiation response of mammalian cells grown in culture. I. Repair of x-ray damage in surviving Chinese hamster cells. Radiat Res 13: 556–593

    PubMed  CAS  Google Scholar 

  • Ellinger F (1957) Medical radiation biology. Thomas, Springfield

    Google Scholar 

  • Ellis F (1942) Tolerance dosage in radiotherapy with 200 kV x-rays. Br J Radiol 15: 348–350

    Google Scholar 

  • Ellis F (1968) Time, fractionation and dose rate in radiotherapy. Front Radiat Ther Oncol 3: 131–140

    Google Scholar 

  • Ellis F (1969) Dose, time and fractionation: a clinical hypothesis. Clin Radiol 20: 1–7

    PubMed  CAS  Google Scholar 

  • Ellis F (1970) Time and dose relationships in radiation biology as applied to radiotherapy In: Bond (ed) National Cancer Institute-Atomic Energy Commission (NCI-AEC) Conference in Carmel, Upton, L.I. Brook- haven National Laboratory Report 50203 (C-57), pp 313–314

    Google Scholar 

  • Ellis F (1971) Nominal standard dose and the ret. Br J Radiol 44: 101–108

    PubMed  CAS  Google Scholar 

  • Emery EW, Denekamp J, Ball MM, Field SB (1970) Survival of mouse skin epithelial cells following single and divided doses of x-rays. Radiat Res 41: 450–466

    PubMed  CAS  Google Scholar 

  • Errington RD, Catterall M (1986) Re-irradiation of advanced tumors of the head and neck with fast neutrons. Int J Radiat Oncol Biol Phys 12: 191–195

    PubMed  CAS  Google Scholar 

  • Fajardo LF, Berthrong M (1981) Radiation injury in surgical pathology. III. Salivary glands, pancreas and skin. Am J Surg Pathol 5: 279–296

    PubMed  CAS  Google Scholar 

  • Fertil B, Malaise EP (1981) Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int J Radiat Oncol Biol Phys 7: 621–629

    PubMed  CAS  Google Scholar 

  • Field SB (1969) Early and late reactions in skin of rats following irradiation with x-rays or fast neutrons. Radiology 92: 381–384

    PubMed  CAS  Google Scholar 

  • Field SB (1972) The Ellis formula for x-rays and fast neutrons. Br J Radiol 45: 315–317

    PubMed  CAS  Google Scholar 

  • Field SB (1976) An historical survey of radiobiology and radiotherapy with fast neutrons. Curr Top Radiat Res 11: 1–86

    CAS  Google Scholar 

  • Field SB, Law MP (1976) The relationship between early and late radiation damage in rodent skin. Int J Radiat Biol 30: 557–564

    CAS  Google Scholar 

  • Field SB, Michalowski A (1979) Endpoints for damage to normal tissues. Int J Radiat Oncol Biol Phys 5: 1185–1196

    PubMed  CAS  Google Scholar 

  • Field SB, Morris C, Denekamp J, Fowler JF (1975) The response of mouse skin to fractionated x-rays. Eur J Cancer 11: 291–299

    PubMed  CAS  Google Scholar 

  • Field SB, Morgan RL, Morrison R (1976) The response of human skin to irradiation with x-rays or fast neutrons. Int J Radiat Oncol Biol Phys 1: 481–486

    PubMed  CAS  Google Scholar 

  • Fletcher GH, Barkley HT (1974) Present status of the time factor in clinical radiotherapy. I. The historical background of the recovery exponents. J Radiol Electrol 55: 443–450

    PubMed  CAS  Google Scholar 

  • Fowler JF (1971) Experimental animal results relating to time-dose relationships in radiotherapy and the “ret” concept. Br J Radiol 44: 81–90

    PubMed  CAS  Google Scholar 

  • Fowler JF (1984a) Review: total doses in fractionated radiotherapy — implications of new radiobiological data. Int J Radiat Biol 46: 103–120

    CAS  Google Scholar 

  • Fowler JF (1984b) What next in fractionated radiotherapy? Br J Cancer 49 [Suppl IV]: 285–300

    Google Scholar 

  • Fowler JF, Stern BE (1960) Dose-rate effects: some theoretical and practical considerations. Br J Radiol 33: 389–395

    PubMed  CAS  Google Scholar 

  • Fowler JF, Stern BE (1963) Dose-time relationships in radiotherapy and the validity of cell survival curve models. Br J Radiol 36: 163–173

    PubMed  CAS  Google Scholar 

  • Fowler JF, Morgan RL, Silvester JA, Bewley DK, Turner BA (1963) Experiments with fractionated x-ray treatment of the skin of pigs. I. Fractionation up to 28 days. Br J Radiol 36: 188–196

    PubMed  CAS  Google Scholar 

  • Fowler JF, Bewley DK, Morgan RL, Silvester JA (1965) Experiments with fractionated x-irradiation of the skin of pigs. II. Fractionation up to five days. Br J Radiol 38: 278–284

    PubMed  CAS  Google Scholar 

  • Fowler JF, Denekamp J, Delapayre C, Sheldon PW, Harris S (1974) Skin reactions in mice after multifraction x-irradiation. Int J Radiat Biol 25: 213–223

    CAS  Google Scholar 

  • Frommhold W, Bublitz G (1967) Untersuchungen über Unterhautfibrosen nach Telekobaltterapie und ihre Behandlungsmöglichkeiten mit DMSO. Strahlentherapie 133: 529–538

    PubMed  CAS  Google Scholar 

  • Gassmann A (1899) Zur Histologie der Röntgenulcera. Fortschr Roentgenstr 2: 199–207

    Google Scholar 

  • Gauwerky F, Langheim F (1978) Der Zeitfaktor bei der strahleninduzierten subkutanen Fibrose. Strahlentherapie 154: 608–616

    PubMed  CAS  Google Scholar 

  • Glasser O (1925) Erythemdosen in Röntgeneinheiten. Strahlentherapie 20: 141–144

    Google Scholar 

  • Glicksman AS, Chu FCH, Bane HN, Nickson JJ (1960) Quantitative and qualitative evaluation of skin erythema. II. Clinical study in patients on a standardised irradiation schedule. Radiology 75: 411–415

    PubMed  CAS  Google Scholar 

  • Gordon AB, Harmer CL, O’Sullivan M (1987) Treatment of post-radiotherapy teleangiectasia by injection sclerotherapy. Clin Radiol 38: 25–26

    PubMed  CAS  Google Scholar 

  • Greco FA, Brereton HD, Kent H, Zimbler H, Merrill J, Johnson RE (1976) Adriamycin and enhanced radiation reaction in normal esophagus and skin. Ann Intern Med 85: 294–298

    PubMed  CAS  Google Scholar 

  • Griem ML, Malkinson FD (1967) Some studies on the effects of radiation and radiation modifiers on growing hair. Radiat Res 30: 431–443

    PubMed  CAS  Google Scholar 

  • Griem ML, Dimitrievich GS, Lee RM (1979) The effects of X-irradiation and adriamycin on proliferating and nonproliferating hair coat of the mouse. Int J Radiat Oncol 5: 1261–1264

    CAS  Google Scholar 

  • Grise JW, Rubin P, Ryplansky A, Cramer L (1960) Factors influencing response and recovery of grafted skin to ionizing irradiation; experimental observations. AJR 83: 1087–1096

    CAS  Google Scholar 

  • Guigon M, Frindel E, Tubiana M (1978) Effects of the association of chemotherapy and radiotherapy on normal mouse skin. Int J Radiat Oncol Biol Phys 4: 233–238

    PubMed  CAS  Google Scholar 

  • Hayashi S, Suit HD (1972) Effect of fractionation radiation dose on skin contraction and skin reaction of Swiss mice. Radiology 103: 431–437

    PubMed  CAS  Google Scholar 

  • Hegazy MAH, Fowler JF (1973a) Cell population kinetics of plucked and unplucked mouse skin. I. Unirradiated skin. Cell Tissue Kinet 6: 17–23

    PubMed  CAS  Google Scholar 

  • Hegazy MA, Fowler JF (1973b) Cell population kinetics of plucked and unplucked mouse skin. II. Irradiated skin Cell Tissue Kinet 6: 587–602

    CAS  Google Scholar 

  • Heidenhain L (1926) Das Problem der Röntgendosis. Strahlentherapie 21: 96–109

    Google Scholar 

  • Heineke H, Perthes G (1925) Die biologische Wirkung der Röntgen- und Radiumstrahlen. In: Meyer H (ed) Lehrbuch der Strahlentherapie, vol 1. Urban & Schwarzenberg, Berlin, pp 725–882

    Google Scholar 

  • Hendry JH The tolerance of mouse tails to necrosis after repeated irradiation with x-rays. Br J Radiol 51: 808–813

    Google Scholar 

  • Hendry JH (1984) Correlation of the dose-response relationships for epidermal colony-forming units, skin reactions, and healing, in the x-irradiated mouse tail. Br. J Radiol 57: 909–918

    PubMed  CAS  Google Scholar 

  • Hendry JH (1987) Re-irradiation of tissues: dose-response relationships. Proc. 14th Int. Cancer Congr. Budapest 1986, vol 4, pp. 203–210, Karger, Basel/Akademiai Kiado, Budapest, 1987.

    Google Scholar 

  • Hendry JH, Rosenberg I, Greene D, Stewart JG (1977) Reirradiation of rat tails to necrosis at six months after treatment with a “tolerance” dose of x-rays or neutrons. Br J Radiol 50: 567–572

    PubMed  CAS  Google Scholar 

  • Henkelman RM, Lam GKY, Komelsen RO, Eaves CJ (1980) Explanation of dose-rate and split-dose effects on mouse foot reactions using the same time factor. Radiat Res 84: 276–289

    PubMed  CAS  Google Scholar 

  • Holthusen H (1925) Die qualitative und quantitative Messung der Röntgenstrahlen. In: Meyer H (ed) Lehrbuch der Strahlentherapie, vol 1. Urban & Schwarzenberg, Berlin, pp 287–360

    Google Scholar 

  • Holthusen H (1936) Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlentherapie 57: 254–269

    Google Scholar 

  • Hopewell JW (1980) The importance of vascular damage in the development of late radiation effects in normal tissues. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven, New York, pp 449–459

    Google Scholar 

  • Hopewell JW, Gunn Y (1981) Factors for correcting the CRE formula for late effects in normal tissues: how valid are they? Int J Radiat Oncol Biol Phys 7: 683–684

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Van Den Aardweg GJMJ (1988) Current concepts of dose fractionation in radiotherapy. Normal tissue tolerance. Br J Radiol [Suppl 22]: 88–94

    Google Scholar 

  • Hopewell JW, Young CMA (1982) The effect of field size on the reaction of pig skin to single doses of x-rays. Br J Radiol 55: 356–361

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Foster JL, Gunn Y (1978) Role of vascular damage in the development of late radiation effects in the skin. In: Late biological effects of ionizing radiation. Proceedings of a Symposium, Vienna, March 1978. International Atomic Energy Agency publication STI/ PUB/489, Vienna, pp 483–492

    Google Scholar 

  • Hopewell JW, Foster JL, Young CMA, Wiernik G (1979) Late radiation damage to pig skin. Radiology 130: 783–788

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Hamlet R, Peel D (1985) The response of pig skin to single doses of irradiation from strontium-90 sources of differing surface area. Br J Radiol 58: 778–780

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Coggle JE, Wells J, Hamlet R, Williams JP, Charles MW (1986) The acute effects of different energy beta-emitters on pig and mouse skin. Br J Radiol [Suppl 19]: 47–50

    Google Scholar 

  • Howes AE, Brown JM (1979) Early and late response of the mouse limb to multifractionated x-irradiation. Int J Radiat Oncol Biol Phys 5: 13–21

    PubMed  CAS  Google Scholar 

  • Hug O, Kellerer AM, Zuppinger A (1966) Der Zeitfaktor. In: Hug O, Zuppinger A (eds) Strahlenbiologie 1. Springer, Berlin Heidelberg New York (Handbuch der medizinischen Radiologie, vol II/1, pp 271–354)

    Google Scholar 

  • Hunter RD, Stewart JG (1977) The tolerance to reirradiation of heavily irradiated human skin. Br J Radiol 50: 573–575

    PubMed  CAS  Google Scholar 

  • Iselin H (1912) Schädigung der Haut durch Röntgenlicht nach Tiefenbestrahlung (Aluminium). Kumulierende Wirkung. Münch Med Wochenschr 59: 2660–2663

    Google Scholar 

  • Jingu K, Masuda K, Withers HR, Hunter N (1989) Radiosensitivity of pre-irradiated mouse skin to second courses of single and multifractionated irradiation — skin shrinkage. Radiother Oncol 14: 143–150

    PubMed  CAS  Google Scholar 

  • Joiner MC, Maughan RL, Fowler JF, Denekamp J (1983) The RBE for mouse skin irradiated with 3-MeV neutrons: single and fractionated doses. Radiat Res 95: 130–141

    PubMed  CAS  Google Scholar 

  • Joiner MC, Bremner JC, Denekamp J, Maughan RL (1984) The interaction between x-rays and 3 MeV neutrons in the skin of the mouse foot. Int J Radiat Biol 46: 625–638

    CAS  Google Scholar 

  • Jolles B, Harrison RG (1966) Enzymatic processes and vascular changes in the skin irradiation reaction. Br J Radiol 39: 12–16

    PubMed  CAS  Google Scholar 

  • Jolles B, Mitchell RG (1947) Optimal skin tolerance dose levels. Br J Radiol 20: 405–409

    PubMed  CAS  Google Scholar 

  • Joyet G, Hohl K (1955) Die biologische Hautreaktion in der Tiefentherapie als Funktion der Feldgröße. Ein Gesetz der Strahlentherapie. Fortschr Roentgenstr 82: 387–400

    CAS  Google Scholar 

  • Kal HB, Gaiser JF (1977) Tumour growth delay and normal tissue reactions induced by fractionated, low dose-rate irradiation. In: Radiobiological research and radiotherapy. IAEA, Vienna, vol 1, pp 11–19

    Google Scholar 

  • Kal HB, Sissingh HA (1974) Effectiveness of continuous low dose-rate gamma-irradiation on rat skin. Br J Radiol 47: 673–678

    PubMed  CAS  Google Scholar 

  • Kalz F (1941) Theoretical considerations and clinical use of Grenz rays in dermatology. Arch Dermatol Syph 43: 447–472

    Google Scholar 

  • Kärcher, KH (1958) Überdie Nachbehandlung strahlenbelasteter Haut. Strahlentherapic 107: 453–461

    Google Scholar 

  • Kepp RK (1944) Ergebnisse von Erythemversuchen mit fraktionierter Röntgenbestrahlung bei ungleicher Größe der Einzeldosen. Strahlentherapie 74: 331–339

    Google Scholar 

  • Kim JH, Chu FCH, Hilaris B (1975) The influence of dose fractionation on acute and late reactions in patients with postoperative radiotherapy for carcinoma of the breast. Cancer 35: 1583–1586

    PubMed  CAS  Google Scholar 

  • Kirk J, Gray WM, Watson ER (1975) Cumulative radiation effect. Part IV. Normalization of fractionated and continuous therapy-area and volume correction factors. Clin Radiol 26: 77–88

    PubMed  CAS  Google Scholar 

  • Kirk J, Gray WM, Watson ER (1971) Cumulative radiation effect. Part I. Fractionated treatment regimes. Clin Radiol 22: 145–155

    PubMed  CAS  Google Scholar 

  • Kirk J, Gray WM, Watson ER (1975) Cumulative radiation effect. Part V. Time gaps in treatment regimes. Clin Radiol 26: 159–176

    Google Scholar 

  • Kligerman MM, Smith A, Yuhas JM, Wilson S, Sternhagen CJ, Helland JA, Sala JM (1977) The relative biological effectiveness of pions in the acute response of human skin. Int J Radiat Oncol Biol Phys 3: 335–340

    PubMed  CAS  Google Scholar 

  • Klostermann GF (1966) Röntgenfolgen an der Haut nach Hämangiombestrahlung. Strahlentherapie: 130: 205–218

    PubMed  CAS  Google Scholar 

  • Langlois D, Eschwege F, Kramar A, Richard JM (1985) Reirradiation of head and neck cancers. Radiother Oncol 3: 27–33

    PubMed  CAS  Google Scholar 

  • Law MP (1981) Radiation-induced vascular injury and its relation to late effects in normal tissues. Adv Radiat Biol 9: 37–73

    CAS  Google Scholar 

  • Law MP, Thomlinson RH (1978) Vascular permeability in the ear of rats after x-irradiation. Br J Radiol 51: 895–904

    PubMed  CAS  Google Scholar 

  • Lemperle G, Koslowski J (eds) (1984) Chirurgie der Strahlenfolgen. Urban & Schwarzenberg, Munich

    Google Scholar 

  • Liegner LM, Michaud NJ (1961) Skin and subcutaneous reactions induced by supervoltage irradiation, AJR 85: 533–549

    CAS  Google Scholar 

  • Liversage WE (1969) A general formula for equating protracted and acute regimes of radiation. Br J Radiol 42: 432–440

    PubMed  CAS  Google Scholar 

  • Liversage WE (1971) A critical look at the ret. Br J Radiol 44: 91–100

    PubMed  CAS  Google Scholar 

  • MAcComb WS, Quimby EH (1936) The rate of recovery of human skin from the effects of hard or soft roentgen rays or gamma rays. Radiology 27: 196–207

    CAS  Google Scholar 

  • Masuda K, Hunter N, Withers HR (1980) Late effect in mouse skin following single and multifractionated irradiation. Int J Radiat Oncol Biol Phys 6: 1539–1544

    PubMed  CAS  Google Scholar 

  • Masuda K, Matsuura K, Withers HR, Hunter N (1986) Response of previously irradiated mouse skin to a second course of irradiation: early skin reaction and skin shrinkage. Int J Radiat Oncol Biol Phys 12: 1645–1651

    PubMed  CAS  Google Scholar 

  • McWirther R (1935) 12th Annual Report, British Empire Cancer Campaign, pp 131–144

    Google Scholar 

  • Michalowski, A (1981) Effects of radiation on normal tissues: hypothetical mechanisms and limitations of in situ assays of clonogenicity. Radiat Environ Biophys 19: 157–172

    PubMed  CAS  Google Scholar 

  • Miescher G (1924) Das Röntgenerythem. Strahlentherapie 16: 333–371

    Google Scholar 

  • Mitchell JS (1960) Studies in radiotherapeutics. Blackwell, Cambridge, Oxford

    Google Scholar 

  • Mitchell JB, Bedford JS, Bailey SM (1979) Dose-rate effects in mammalian cells in culture. III. Comparison of cell killing and cell proliferation during continuous irradiation for six different cell lines. Radiat Res 79: 537–551

    PubMed  CAS  Google Scholar 

  • Montague ED (1968) Experience with altered fractionation in radiation therapy of breast cancer. Radiology 90: 962–966

    PubMed  CAS  Google Scholar 

  • Morgan SA, Yarnold JR, Patterson D (1987) The severity of late skin damage related to fraction size in women treated by radiotherapy after mastectomy. Radiother Oncol 8: 315–319

    PubMed  CAS  Google Scholar 

  • Morris GM, Hopewell JW (1985) Pig epidermis: a cell kinetic study. Cell Tissue Kinet 18: 407–415

    PubMed  CAS  Google Scholar 

  • Morris GM, Hopewell JW (1986) Changes in the cell kinetics of pig epidermis after repeated daily doses of x-rays. Br J Radiol [Suppl 19]: 34–38

    Google Scholar 

  • Morris GM, Hopewell JW (1987) Cell population kinetics in pig epidermis: further studies. Cell Tissue Kinet 20: 161–169

    PubMed  CAS  Google Scholar 

  • Morris GM, Hopewell JW (1988) Changes in the cell kinetics of pig epidermis after single doses of x-rays. Br J Radiol 61: 205–211

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fischer JJ (1976) Radiation reaction of rat skin. Cancer 37: 2762–2767

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fischer JJ, Casey A (1975) Dose-time relationships for skin reactions and structural damage in rat feet exposed to 250 kV x-rays. Radiology 115: 465–470

    PubMed  CAS  Google Scholar 

  • Moustafa HF, Hopewell JW (1979) Blood flow clearance changes in pig skin after single doses of x-rays. Br J Radiol 52: 138–144

    PubMed  CAS  Google Scholar 

  • Muggia FM, Cortes-Funes H, Wassermann TH (1978) Radiotherapy and chemotherapy in combined clinical trials: problems and promise. Int J Radiat Oncol Biol Phys 4: 161–171

    PubMed  CAS  Google Scholar 

  • Mühlmann E, Meyer O (1923) Beiträge zur Röntgenschädigung tiefgelegener Gewebe. Strahlentherapie 15: 48–64

    Google Scholar 

  • Nguyen TD, Demange L, Froissart D, Panis X, Loirette M (1985) Rapid hyperfractionated radiotherapy. Clinical results in 178 advanced squamous cell carcinomas of the head and neck. Cancer 56: 16–19

    PubMed  CAS  Google Scholar 

  • Nguyen TD, Panis X, Froissart D, Legros M, Coninx P, Loirette M (1988) Analysis of late complications after rapid hyperfractionated radiotherapy in advanced head and neck cancers. Int J Radiat Oncol Biol Phys 14: 23–25

    PubMed  CAS  Google Scholar 

  • Nias AHW (1963) Some comparisons of fractionation effects in erythema measurements on human skin. Br J Radiol 36: 183–187

    PubMed  CAS  Google Scholar 

  • Notter G, Turesson I (1976) Prospective studies with the CRE formula of prolonged fractionation schedules. Radiology 121: 709–715

    PubMed  CAS  Google Scholar 

  • Orton CG, Ellis F (1973) A simplification in the use of the NSD concept in practical radiotherapy. Br J Radiol 46: 529–537

    PubMed  CAS  Google Scholar 

  • Overgaard M, Bentzen SM, Christensen JJ, Madsen EH (1987) The value of the NSD formula in equation of acute and late radiation complications in normal tissue following 2 and 5 fractions per week in breast cancer patients treated with postmastectomy irradiation. Radiother Oncol 9: 1–12

    PubMed  CAS  Google Scholar 

  • Pape R (1933) Zur Frage des Vergleichs der Hautreaktion unter verschiedenen Bestrahlungsbedingungen. Strahlentherapie 48: 73–96

    Google Scholar 

  • Paterson R (1948) The treatment of malignant disease by radium and x-rays. Williams & Wilkins, Balimore

    Google Scholar 

  • Paterson R (1963) The treatment of malignant disease by radiotherapy, 2nd edition. Edward Arnold London

    Google Scholar 

  • Paterson MC (1989) Human ill health, abnormal radiation induced cytotoxicity and aberrant DNA metabolism. In: Low Dose Radiation, Taylor and Francis, London, New York, Philadelphia

    Google Scholar 

  • Patterson TJS, Berry RJ, Wiernik G (1972) The effect of x-radiation on the survival of skin flaps in the pig. Br J Plast Surg 25: 17–19

    PubMed  CAS  Google Scholar 

  • Patterson TJS, Berry RJ, Hopewell JW, Wiernik G (1975) The effect of x-radiation on the survival of experimental skin flaps. In: Grabb WC, Myers MB (eds) Skin flaps. Little, Brown & Co., Boston, pp 39–46

    Google Scholar 

  • Peel DM, Hopewell JW, Simmonds RH, Dodd P, Meistrich ML (1984a) Split-dose recovery in epithelial and vascular-connective tissue of pig skin. Radiother Oncol 2: 151–157

    PubMed  CAS  Google Scholar 

  • Peel, DM, Hopewell, JW, Wells J, Charles, MW (1984b) Nonstochastic effects of different energy β emitters on pigskin. Radiat Res 99: 372–382

    PubMed  CAS  Google Scholar 

  • Peters LJ, Withers HR (1981) Factors for correcting the CRE formula for late effects in normal tissue: How valid are they? Int J Radiat Oncol Biol Phys 7: 684–685

    PubMed  CAS  Google Scholar 

  • Phillips TL (1980) Tissue toxicity of radiation-drug interaction. In: Sokol GH, Maickel RP (eds) Radiation-drug interactions in the treatment of cancer. Wiley, New York, pp 175–200

    Google Scholar 

  • Potten CS (1978) The cellular and tissue response to single doses of ionizing radiation. Curr Top Radiat Res 13: 1–59

    Google Scholar 

  • Potten CS (1985) Radiation and skin. Taylor & Francis, London

    Google Scholar 

  • Powell-Smith C (1965) Factors influencing the incidence of radiation injury in cancer of the cervix. J Assoc Canad Radiol 16: 132–137

    Google Scholar 

  • Probert JC, Brown JM (1974) A comparison of 3 and 5 times weekly fractionation on the response of normal and malignant tissues of the C3H mouse. Br J Radiol 47: 775–780

    PubMed  CAS  Google Scholar 

  • Puck TT, Marcus PI (1956) Action of x-rays on mammalian cells. J Exp Med 103: 273–283

    PubMed  CAS  Google Scholar 

  • Quimby EH (1937) Further studies on the rate of recovery of human skin from the effects of roentgen- or gammaray irradiation. Radiology 29: 305–312

    Google Scholar 

  • Raju MR, Carpenter S, Tokita N, Dicello JF, Jackson D, Frölich E, von Essen C (1981) Effect of fractionated doses of pions on normal tissues: part I; mouse skin. Int J Radiat Oncol Biol Phys 6: 1663–1666

    Google Scholar 

  • Redpath JL, Colman M (1979) The effect of adriamycin and actinomycin D on radiation-induced skin reactions in mouse feet. Int J Radiat Oncol Biol Phys 5: 483–486

    PubMed  CAS  Google Scholar 

  • Redpath JL, Peel DM, Dodd P, Simmonds RH, Hopewell JW (1985) Repopulation in irradiated pig skin: late versus early effects. Radiother Oncol 3: 173–176

    PubMed  CAS  Google Scholar 

  • Reisner A (1933) Hauterythem und Röntgenbestrahlung. Ergebnisse der Medizinischen Strahlenforschung 6: 1–60

    Google Scholar 

  • Rojas A, Joiner MC, Johns H (1989) Recovery kinetics in mouse skin and CaNT tumours. Radiother Oncol 14: 329–336

    PubMed  CAS  Google Scholar 

  • Rubin P, Casarett GW (1968) Clinical radiation pathology. Saunders, Philadelphia

    Google Scholar 

  • Rubin P, Grise JW (1960) The difference in response of grafted and normal skin to ionizing radiations. AJR 84: 645–655

    CAS  Google Scholar 

  • Rubin P, Casarett G, Grise JW (1960) The vascular pathophysiology of an irradiated graft. AJR 83: 1097–1104

    CAS  Google Scholar 

  • Sause WT, Stewart JR, Plenk HP, Levitt DD (1981) Late skin changes following twice-weekly electron beam radiation to post-mastectomy chest walls. Int Radiat Oncol Biol Phys 7: 1541–1544

    CAS  Google Scholar 

  • Schinz HR (1937) Die fraktionierte and protrahiertfraktionierte Bestrahlung. Zürcher Erfahrungen. Stralentherapic 58: 373–405

    Google Scholar 

  • Seitz L, Wintz H (1920) Unsere Methode derr Röntgen- tiefentherapie und ihre Erfolge. Sonderband 5 der Strahlentherapie

    Google Scholar 

  • Sheline GE, Phillips TL, Brennan SB (1971) Effects of fast neutrons on human skin. AJR 111: 31–41

    CAS  Google Scholar 

  • Skolyszewski J, Korzeniowski S, Reinfuss M (1980) The reirradiation of recurrences of head and neck cancer. Br J Radiol 53: 462–465

    PubMed  CAS  Google Scholar 

  • Skolyszewski J, Korzeniowski S (1988) Re-irradiation of recurrent head and neck cancer with fast neutrons. Br J Radiol 61: 527–528

    PubMed  CAS  Google Scholar 

  • Smith KC, Hahn GM, Hopper RT, Earle JD (1980) Radiosensitivity in vitro of human fibroblasts derived from patients with a severe skin reaction to radiation therapy. Int J Radiat Oncol Biol Phys 6: 1573–1575

    PubMed  CAS  Google Scholar 

  • Stein G (1963) Röntgenfolgezustände im Bereich der Haut. Strahlentherapie 121: 247–258

    PubMed  CAS  Google Scholar 

  • Strandquist M (1944) Studien über die kumulative Wirkung der Röntgenstrahlen bei Fraktionierung. Acta Radiol [Suppl] 55: 1–300

    Google Scholar 

  • Strauss O (1925) Schädigungen durch Röntgen-und Radiumstrahlen. In: Meyer H (ed) Lehrbuch der Strahlentherapie, vol I. Urban & Schwarzenberg, Berlin, pp 979–1060

    Google Scholar 

  • Strauss, JS, Kligman, AM (1960) Effects of x-rays on sebaceous glands of the human face: radiation therapy of acne. J Invest Derm 32: 347–356

    Google Scholar 

  • Thames, HD (1985) An ‘incomplete-repair model’ for survival after fractionated and continuous irradiation. Int J Radiat Biol 47: 319–339

    CAS  Google Scholar 

  • Thames HD, Hendry JH (1987) Fractionation in radiotherapy. Taylor & Francis, London

    Google Scholar 

  • Thames HD, Withers HR, Peters LJ, Fletcher GH (1982) Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 8: 219–226

    PubMed  Google Scholar 

  • Tilkorn H, Drepper M, Ehring F (1986) Indications for the treatment by plastic surgery of the effects of radiation and radiolesions on the skin. Br J Radiol [Suppl 19]: 131–134

    Google Scholar 

  • Traenkle HL, Mulay D (1960) Further observations on late radiation necrosis following therapy of skin cancer. Arch Dermatol 81: 908–913

    PubMed  CAS  Google Scholar 

  • Tucker SL (1984) Tests for the fit of the linear-quadratic model to radiation isoeffect data. Int J Radiat Oncol Biol Phys 10: 1933–1939

    PubMed  CAS  Google Scholar 

  • Turesson I, Notter G (1976) Control of dose administered once a week and three times a day according to schedules calculated by the CRE formula, using skin reaction as a biological parameter. Radiology 120: 399–404

    PubMed  CAS  Google Scholar 

  • Turesson I, Notter G (1979a) The response of pig skin to single and fractionated high dose-rate and continuous low dose-rate 137Cs-irradiation — I: Experimental design and results. Int J Radiat Oncol Biol Phys 5: 835–844

    PubMed  CAS  Google Scholar 

  • Turesson I, Notter G (1979b) The response of pig skin to single and fractionated high dose-rate and continuous low dose-rate 137Cs-irradiation — II: Theoretical considerations of the results. Int J Radiat Oncol Biol Phys 5: 955–963

    PubMed  CAS  Google Scholar 

  • Turesson I, Notter G (1979c) The response of pig skin to single and fractionated high dose-rate and continuous low dose-rate 137Cs-irradiation — III: Re-evaluation of the CRE system and the TDF system according to the present findings. Int J Radiat Oncol Biol Phys 5: 1773–1779

    PubMed  CAS  Google Scholar 

  • Turesson I, Notter G (1984a) The influence of fraction size in radiotherapy on the late normal tissue reaction — I: Comparison of the effects of daily and once-a-week fractionation on human skin. Int J Radiat Oncol Biol Phys 10: 593–598

    PubMed  CAS  Google Scholar 

  • Turesson I, Notter, G (1984b) The influence of fraction size in radiotherapy on the late normal tissue reaction — II: Comparison of the effects of daily and twice-a-week fractionation on human skin. Int J Radiat Oncol Biol Phys 10: 599–606

    PubMed  CAS  Google Scholar 

  • Turesson I, Notter G (1984c) The influence of the overall treatment time in radiotherapy on the acute reaction: comparison of the effects of daily and twice-a-week fractionation on human skin. Int J Radiat Oncol Biol Phys 10: 607–618

    PubMed  CAS  Google Scholar 

  • Turesson I, Notter G (1988) Accelerated versus conventional fractionation. The degree of incomplete repair in human skin with a four-hour-fraction interval studied after postmastectomy irradiation. Acta Oncol 27: 169–179

    PubMed  CAS  Google Scholar 

  • Turesson I, Thames HD (1989) Repair capacity and kinetics of human skin during fractionated radiotherapy: erythema, desquamation, and telangiectasia after 3 and 5 years’ follow-up. Radiother Oncol 15: 169–188

    PubMed  CAS  Google Scholar 

  • Ullrich RL, Casarett GW (1977) Interrelationship between the early inflammatory response and subsequent fibrosis after radiation exposure. Radiat Res 72: 107–121

    PubMed  CAS  Google Scholar 

  • Van Den Aardweg GJMJ, Hopewell JW, Simmonds RH (1988) Repair and recovery in the epithelial and vascular connective tissues of pig skin after irradiation. Radiother Oncol 11: 73–82

    PubMed  Google Scholar 

  • Van Rongen E, Kal HB (1984) Acute reactions in rat feet exposed to multiple fractions of x-rays per day. Radiother Oncol 2: 141–150

    PubMed  Google Scholar 

  • Von der Maase (1986) Experimental studies on interactions of radiation and chemotherapeutic drugs in normal tissues and a solid tumor. Radiother Oncol 7: 47–68

    PubMed  Google Scholar 

  • Vegesna V, Withers HR, Taylor JMG (1988) Epilation in mice after single and multifractionated irradiation. Radiother Oncol 12: 233–239

    PubMed  CAS  Google Scholar 

  • Von Essen CF (1963) A spatial model of time-dose-area relationship in radiation therapy. Radiology 81: 881–883

    Google Scholar 

  • Von Essen CF (1968) Radiation tolerance of the skin. Acta Radiol Ther 8: 311–330

    Google Scholar 

  • Von Essen CF (1972) Clinical radiation tolerance of the skin and upper aerodigestive tract. Front Radiat Ther Oncol 6: 148–159

    Google Scholar 

  • Weichselbaum RR, Epstein J, Little JB (1976) In vitro radiosensitivity of human diploid fibroblasts derived from patients with unusual clinical responses to radiation. Radiology 121: 479–482

    PubMed  CAS  Google Scholar 

  • White RL, El-Mahdi AM, Ramirez HL (1975) Thermographic changes following preoperative radiotherapy in head and neck cancer. Radiology 117: 469–471

    PubMed  CAS  Google Scholar 

  • Wheldon TE, Michalowski AS, Kirk J (1982) The effect of irradiation on function in self-renewing normal tissues with differing proliferative organisation. Br J Radiol 55: 759–766

    PubMed  CAS  Google Scholar 

  • Wiernik G, Patterson TJS, Berry RJ (1974) The effect of fractionated dose-patterns of x-radiation on the survival of experimental skin flaps in the pig. Br J Radiol 47: 343–345

    PubMed  CAS  Google Scholar 

  • Wiernik G, Hopewell JW, Patterson TJS, Young CMA, Foster JL Response of pig skin to fractionated radiation doses. Radiobiological research and radiotherapy, vol I. IAEA, Vienna, 93–103

    Google Scholar 

  • Withers HR (1967) Recovery and repopulation in vivo by mouse skin epithelial cells during fractionated irradiation. Radiat Res 32: 227–239

    PubMed  CAS  Google Scholar 

  • Withers HR, Flow BL, Huchton UI, Hussey DH, Jardine JH, Mason KA, Rauston GL, Smathers JB (1977) Effect of dose fractionation on early and late skin responses to γ-rays and neutrons. Int J Radiat Oncol Biol Phys 3: 227–233

    PubMed  CAS  Google Scholar 

  • Withers HR, Thames HD, Flow BL, Mason KA, Hussey DH (1978a) The relationship of acute to late skin injury in 2 and 5 fraction/week gamma-ray therapy. Int J Radiat Oncol Biol Phys 4: 595–601

    PubMed  CAS  Google Scholar 

  • Withers HW, Thames HD, Hussey DH, Flow BL, Mason KA (1978b) Relative biological effectiveness (RBE) of 50 MV (Be) neutrons for acute and late skin injury. Int J Radiat Oncol Biol Phys 4: 603–608

    PubMed  CAS  Google Scholar 

  • Withers HR, Thames HD, Peters LJ (1984) A new isoeffect curve for change in dose per fraction. Radiother Oncol 1: 187–191

    Google Scholar 

  • Witte E (1941) Dosierung im biologischen Maß. Strahlentherapie 72: 177–194

    Google Scholar 

  • Wondergem J, Haveman J (1987) The effect of previous treatment on the response of mouse feet to irradiation and hyperthermia. Radiother Oncol 10: 253–261

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Tabachnick J Cell kinetics of epidermal repopulation and persistent hyperplasia in locally β- irradiated guinea pig skin. Radiat Res 50: 158–180

    Google Scholar 

  • Yan JH, Hu YH, Gu XZ (1983) Radiation therapy of recurrent nasopharyngeal carcinoma. Acta Radiol Oncol 22: 123–128

    Google Scholar 

  • Young CMA. Hopewell JW (1983) The effects of preoperative x-irradiation on the survival and blood flow of pedicle skin flaps in the pig. Int J Radiat Oncol Biol Phys 9: 865–870

    PubMed  CAS  Google Scholar 

  • Zollinger HJ (1960) Radiohistologie und Radio- Histopathologie. In: Roulet F (ed) Strahlung und Wetter. Springer, Berlin Heidelberg New York (Handbuch der allgemeinen Pathologie, vol x/l), pp 127–287

    Google Scholar 

  • Zuppinger A (1941) Spätveränderungen nach protrahiertfraktionierter Röntgenbestrahlung im Bereich der oberen Luft und Speisewege. Strahlentherapie 70: 361–442

    Google Scholar 

  • Zuppinger A (1949) Die Strahlenbehandlung der Larynx- und Pharynxtumoren. Strahlentherapie 78: 481–500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trott, KR., Kummermehr, J. (1991). Radiation Effects in Skin. In: Scherer, E., Streffer, C., Trott, KR. (eds) Radiopathology of Organs and Tissues. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83416-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83416-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83418-9

  • Online ISBN: 978-3-642-83416-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics