Advertisement

Gas Sensors: Towards an Artificial Nose

  • Paolo Pelosi
  • Krishna Persaud
Part of the NATO ASI Series book series (volume 43)

Abstract

The design of an artificial nose requires (a) a knowledge of the “olfactory language”, i.e. the molecular parameters of the odorants that are measured by specific receptors in the nasal mucosa; (b) the availability of gas sensors, specific, reversible and sensitive, able to convert chemical informations into electric signals.

For what concerns the understanding of odour recognition at the molecular level, it is known that specific receptor proteins, present in the olfactory mucosa, discriminate the various molecular structures on the basis of size, shape and position of functional groups: in this process the hydrocarbon part of the molecule is often very critical.

Gas sensors, based on polymers of aromatic and heteroaromatic molecules, that exhibit electrical conducting properties, can be used as specific odour detectors. Their electrical resistance varies upon interaction with several substances in the gas phase, with a specificity related both to the presence of functional groups and to the shape of the hydrocarbon part of the odorant molecule.

This characteristic, together with fast responses and high stability, make such polymers suitable for designing an artificial nose. Moreover, their organic nature would allow the synthesis of new polymers tailored for detecting particular gases or for spscific needs.

Keywords

Conducting Polymer Olfactory System Molecular Parameter Poly Thiophene Odour Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlgren,G. and Krische,B.: “Composites of conducting polymers”, J. Chem. Soc. Chem. Commun.. 946 (1984)Google Scholar
  2. 2.
    Amoore, J.E.: “A plan to identify most of the primary odors”, in “Olfaction and Taste III”. Pfaffmann C. ed., Rockefeller Univ. Press, N.Y. (1969)Google Scholar
  3. 3.
    Amoore, J.E.: “Four primary odor modalities in man: experimental evidence and possible significance”, in “Olfaction and Taste V”, Denton and Cochlan eds., Acad. Press, N.Y., London (1975)Google Scholar
  4. 4.
    Amoore,J.E., Forrester,L.J. and Pelosi,P.: “Specific anosmia to isobutyraldehyde: the malty primary odor”, Chem. Sens, and Flav.2 17 (1976)Google Scholar
  5. 5.
    Amoore.J.E., Pelosi,P. and Forrester,L.J.: “Specific anosmia to 5??-androst-16-en-3-one and ??? -pentadecalactone: the urinous and musky primary odors”, Chem. Sens, and Flav.2401 (1977)Google Scholar
  6. 6.
    Amoore, J.E.: “Specific anosmia and the concept of primary odors”, Chem. Sens, and Flav.2, 267 (1977)CrossRefGoogle Scholar
  7. 7.
    Beets. M.G.J.: “Structure activity relationships in human chemoreception” Appl. Sci. Publ. Ltd, London (1978)Google Scholar
  8. 8.
    Bignetti, E., Cavaggioni, A., Pelosi, P., Persaud, K.C., Sorbi, R. and Tirindelli, R.: “Purification and characterisation of an odorant binding protein from cow nasal tissue”, Eur. J. Biochem. 149, 227 (1985)CrossRefGoogle Scholar
  9. 9.
    Bredas, J.L., Themans, B., Fripiat, J.G., Andre, J.M. and Chance, R.R.: “Highly conducting polyparaphenylene, plypyrrole and polythiophene chains: an ab initio study of thje geometry and electronic-structure modifications upon doping”. Physical Review B 29, 6761 (1984)CrossRefGoogle Scholar
  10. 10.
    Burgmayer, P. and Murray, R.W.: “A ion gate membrane: electrochemicalm control of ion permeability through a membrane with an embedded electrode”, J. Am. Chem. Soc. 104. 6139 (1982)CrossRefGoogle Scholar
  11. 11.
    Cagan, R.H. and Kare, M.R., eds. “Biochemistry of Taste and Olfaction” Acad. Press. N.Y. (1981)Google Scholar
  12. 12.
    Carlin, C.M, Kepley, L.J. and Bard, A.J.: “Polymer films on electrodes. XVI. In situ ellipsometric measurements of polybipyrazine, polyaniline and polyvinylferrocene films”, J. Electrochem. Soc. 132, 353 (1985)CrossRefGoogle Scholar
  13. 13.
    Chance, R.R., Bredas, J.L. and Silbey, R.: “Bipolaron transport in doped conjugated polymers”, Phys. Rev. B 29, 4491 (1984)CrossRefGoogle Scholar
  14. 14.
    Chien, J.C.W.: “Polyacetylene Physics, Chemistry and Science”, Acad. Press. N.Y. (1984)Google Scholar
  15. 15.
    ChieruJ.C.W.: “Mechanism of electronic conduction in organic metals”, Polym. Prepr.. 262 (1985)Google Scholar
  16. 16.
    Cross.M.G. and Lines,R.: “Compositions comprising an electrically conductive polymer”, U.K. Pat. 83/20646.080183 (1984)Google Scholar
  17. 17.
    De Paoli,M.A., Waltman,R.J., Diaz,A.F. and Bargon,J.: “Conducting composites from plyvinylchloride and polypyrrole”, J. Chem. Soc. Chem. Commun. 1015 (1984)Google Scholar
  18. 18.
    Diaz.A.F.. Kanazawa,K.K. and Gardini,G.P.: “Electrochemical polymerization of pyrrole”, J. Chem. Soc. Chem. Commun. 635 (1979)Google Scholar
  19. 19.
    Feldberg, S.W.: Reinterpretation of polypyrrole electrochemistry. Consideration of capacitive currents in redox switching of conducting polymers, J. Am. Chem. Soc. 106, 4671 (1984)CrossRefGoogle Scholar
  20. 20.
    Fesenko, E.E, Novoselov, V.I. and Krapivinskaya, L.D.: “Molecular mechanisms of olfactory reception. IV. Some biochemical characteristics of the camphor receptor from rat olfactory epithelium”, Biochim. Biophys. Acta 587, 424 (1979)CrossRefGoogle Scholar
  21. 21.
    Ford, W.K., Duke, C.B. and Salaneck, W.R. : “Electronic structure of polypyrrole and oligomers of pyrrole”, J. Chem. Phys. 77, 5030 (1982)CrossRefGoogle Scholar
  22. 22.
    Frank. A.J. and Honda. K.: “Visible light induced water cleavage and stabilization of n-type CdS to photocorrosion with surface attached polypyrrole catalyst coating”, J. Phys. Chem. 86, 1933 (1982)CrossRefGoogle Scholar
  23. 23.
    Genoud, F, Guglielmi, M, Nechtschein, M, Genies, E. and Salmon, M. : “ESR study of electrochemical doping ip the conducting polymer polypyrrole”. Phys. Rev. Lett. 55. 118 (1985)CrossRefGoogle Scholar
  24. 24.
    Hikita, M., Niwa, O, Sugita, A. and Tamamura, T.: “Patterning of conductive polypyrrole in polymer film”, Jpn. J. Appl. Phys. Part 2. 24. L79 (1985)CrossRefGoogle Scholar
  25. 25.
    Hill, H.W. and Brady, D.G.: “Polymers containing sulfur”, Encyclopedia of Chemical Technology, 18, 793 (1982)Google Scholar
  26. 26.
    Hotta. S, Hosaka.T. and Shimotsuma. W.: “Electrochemically prepared polythienilene films”, Synth. Metals 6, 317 (1983)CrossRefGoogle Scholar
  27. 27.
    Kaneto.K., Yoshino.K. and Inuishi,Y.: “Electrical properties of conducting polymer. ply-thiophene, prepared by electrochemical polymerization”, Jpn. J. Appl. Phys. 21, L567 (1982)CrossRefGoogle Scholar
  28. 28.
    Kitani.A.. Izumi.J.. Yano,Y., Hiromoto,Y. and Sasaki.K.: “Basic behaviours and properties of electrodeposited polyaniline”. Bull. Chem. Soc. Japan 57. 2254 (1984)CrossRefGoogle Scholar
  29. 29.
    Inganas.O., Erlandsson,R.. Nylander,C. and Lundstrom, I.: “Proton modification of conducting polypyrrole”, J. Phys. Chem. Solids 45, 427 (1984)CrossRefGoogle Scholar
  30. 30.
    Jakobs.R.C.M., Janssen,L.J.J. and Barendrecht,E.: “Behaviour of polypyrrole and poly N-methylpyrrole electrodes in acetonitrile”, Reel. J. R. Neth. Chem. Soc. 103, 275 (1984)Google Scholar
  31. 31.
    Lecavelier,H., Devreux,F., Nechtschein,M. and Bidan,G.: “NMR studies in Polypyrrole”. Mol. Cryst. Liq. Cryst. 118, 183 (1985)CrossRefGoogle Scholar
  32. 32.
    Lin.J.W.P. and Dudek,L.P.: “Synthesis and properties of poly(2.5-thienilene)” J. Polym. Sci. Polym. Chem. Ed. 18, 2869 (1980)CrossRefGoogle Scholar
  33. 33.
    Lindsey,S.E. and Street,G.B.: “Conductive composites from polyvinylalcohol and polypyrrole”, Synth. Metals 10, 67 (1984)CrossRefGoogle Scholar
  34. 34.
    Mengoli.G., Munari,M.T., Bianco,P. and Musiani,M.M.: “Anodic synthesis of polyaniline coatings onto iron sheets”, J. Appl. Polym. Sci. 26, 4247 (1981)CrossRefGoogle Scholar
  35. 35.
    Nayak,K. and Mark,J.E.: “Electronic band structures for a p-phenilene benzoxazole polymer”, Polym. Prepr. 272 (1985)Google Scholar
  36. 36.
    Niwa.O. and Tamamura.T.: “Electrochemical polymerization of pyrrole on polymer coated electrodes”, J. Chem. Soc. Chem. Commun., 817 (1984)Google Scholar
  37. 37.
    Niwa.O., Hikita.M. and Tamamura,T.: “Polymer-polypyrrole alloy films as semitransparent organic conductors”,Appl. Phys. Lett. 46, 444 (1985)CrossRefGoogle Scholar
  38. 38.
    Pfluger.P. and Street,G.B.: “Chemical, electronic and structural properties of conducting heterocyclic polymers: a view by XPS”, J. Chem. Phys. 80, 544 (1984)CrossRefGoogle Scholar
  39. 39.
    Pfluger,P., Gubler,U.M. and Street,G.B.: “The valence electronic structure of conducting pyrrole polymers: evidence against a linear metallic chaun picture”, Solid State Commun. 49, 911 (1984)CrossRefGoogle Scholar
  40. 40.
    Pelosi.P. and Viti.R.: “Specific anosmia to 1-carvone: the minty primary odour”. Chem. Sens. Flav. 3, 331 (1978)CrossRefGoogle Scholar
  41. 41.
    Pelosi.P. and Pisanelli.A.M.: “Specific anosmia to 1,8-cineole: the camphor primary odour”, Chem. Sens. Flav. 87 (1981)Google Scholar
  42. 42.
    Pelosi.P.. Pisanelli.A.M.. Baldaccini,N.E. and Gagliardo.A.: “Binding of 2-isobutyl-3-methoxypyrazine to cow olfactory mucosa”, Chem. Sens. Flav. 6. 77 (1981)CrossRefGoogle Scholar
  43. 43.
    Pelosi.P., Baldaccini,N.E. and Pisanelli,A.M.: “Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine”, Biochem. J. 201. 245 (1982)Google Scholar
  44. 44.
    Pelosi.P., Pasqualetto,P.L. and Lorenzi,R.: “Synthesis and olfactory properties of some thiazoles with bell pepper like odor”, J. Agric. Food Chem. 31, 482 (1983)CrossRefGoogle Scholar
  45. 45.
    Persaud,K.C. and Dodd,G.H.: “Biochemical mechanisms invertebrate primary olfactory neurons”, in “Biochemistry of Taste and Olfaction” (Cagan and Kare eds.), 333, Acad. Press, N.Y. (1981)Google Scholar
  46. 46.
    Persaud,K.C. and Dodd,G.H.: “Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose”. Nature 299, 352 (1982)CrossRefGoogle Scholar
  47. 47.
    Scott,J.C., Pfluger,P., Krounbi,M.T. and Street,G.B.: “Electron spin resonance studies of pyrrole polymers: evidence for bipolarons”, Phys. Rev. B 282140 (1983)CrossRefGoogle Scholar
  48. 48.
    Shacklette.L.W.. Elsenbaumer,R.L., Chance,R.R., Sowa.J.M., Ivory,D.M. Miller.G.G. and Baughman,R.H.: “Electrochemical doping of poly(p-phenilene) with application to organic batteries”, J. Chem. Soc. Chem. Commun. 361 (1982)Google Scholar
  49. 49.
    Stacy,C.J.: “Molecular weight distribution of poly-(phenilene sulfide) by high temperature gel permeation chromatography”, Polym. Prepr. 180 (1985)Google Scholar
  50. 50.
    Street,G.B.. Clarke.T.C., Krounbi,M., Kanazawa,K., Lee,V.Y., Pfluger,P., Scott,J.C. and Weiser,G.: “Preparation and characterization of neutral and oxidized polypyrrole films”, Mol. Cryst. Liq. Cryst. 83, 253 (1982)CrossRefGoogle Scholar
  51. 51.
    Street.G.B., Clarke,T.C., Geiss,R.H.. Lee,V.Y., Nazzal,A.. Pfluger,P. and Scott,J.C.: Proc. Int. Conf. on Low-Dimensional Conduyctors and Superconductors. Les Arcs, 1982. J. Phys. Coll. C3 (1983)Google Scholar
  52. 52.
    Tanaka.S.. Sato,M. and Kaeriyama,K.: “Electrochemical preparation and characterization of poly(2,5-thiophenediyl)”, Makromol. Chem, 185, 1295 (1984)CrossRefGoogle Scholar
  53. 53.
    Topazzini.A.. Pelosi,P., Pasqualetto,P.L. and Baldaccini,N.E.: “Specificity of a pyrazine binding protein from cow olfactory mucosa”, Chem. Senses 45 (1985)Google Scholar
  54. 54.
    Tourillon.G. and Garnier,F.: “New electrochemically generated organic conducting polymers”, J. Electroanal. Chem. 135, 173 (1982)CrossRefGoogle Scholar
  55. 55.
    Wernet.W.. Monkenbusch,M. and Wegner,G.: “A new series of conducting polymers with layered structure: polypyrrole n-alkylsulfates and n-alkylsulfonates”. Makromol. Chem. Rapid Commun. 5 157 (1984)CrossRefGoogle Scholar
  56. 56.
    Yamamoto.T., Sanechika,K. and Yamamoto,A.: “Preparation of termostable and electric conducting poly(2,5-thienilene)”, J. Polym. Sci. Polym. Lett. Ed. 18. 9 (1980)CrossRefGoogle Scholar
  57. 57.
    Yu.L.T.. Buvet,R.E., Vallot,R., Lauwick,B., Lanore,J.C. and Detriche,P.: “Procede de detection et d’ analise de gaz notamment pour la prevention des incendies”, Eur. Pat. 0.022.028.A1 (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Paolo Pelosi
    • 1
    • 2
  • Krishna Persaud
    • 1
    • 2
  1. 1.Istituto di Industrie AgrarieUniversita’ degli StudiPisaItaly
  2. 2.Dept. of Physiology and BiophysicsMedical College of VirginiaRichmondUSA

Personalised recommendations