Radiotherapy Treatment Planning: Past, Present, and Future

  • A. S. Lichter
  • B. A. Fraass
  • D. L. McShan
  • R. F. Diaz
  • R. K. TenHaken
  • C. Perez-Tamayo
  • K. Weeks
Part of the UICC International Union Against Cancer book series (UICCI)


Radiation therapy treatment planning has made tremendous strides over the last two decades. With the application of modern imaging modalities, faster computers, advanced graphics techniques, and new calculational algorithms, treatment planning is ready to progress to new levels of sophistication. This chapter will summarize the progress made in clinical treatment planning and highlight where the field may be heading over the next decade.


Treatment Planning Target Volume Dose Distribution Dose Calculation Treatment Planning System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bornford CK, Craig LM, Hanna FA, et al. (1981) Treatment simulators. Br J Radiol [Suppl] 16: 1–31Google Scholar
  2. 2.
    Johns HE, Cunningham JR (1983) The physics of radiology, 4th edn. Thomas, Springfield, pp 337–339Google Scholar
  3. 3.
    Tsien KC (1955) The application of automatic computing machines to radiation treatment planning. Br J Radiol 28: 432PubMedCrossRefGoogle Scholar
  4. 4.
    van de Geijn J (1965) The computation of two and three dimensional dose distribution in Co60 therapy. Br J Radiol 38: 369–377CrossRefGoogle Scholar
  5. 5.
    Sterling TD, Perry H, Katz L (1964) Automation of radiation treatment planning IV. Br J Radiol 37: 544–550PubMedCrossRefGoogle Scholar
  6. 6.
    Kaplan HS (1980) Hodgkin’s disease, 2nd edn. Harvard University Press, Cambridge, Mass., p 376Google Scholar
  7. 7.
    Batho HF (1964) Lung corrections in Cobalt 60 beam therapy. J Can Assoc Radiol 15: 79–83PubMedGoogle Scholar
  8. 8.
    Sontag MR, Cunningham JR (1978) The equivalent tissue-air-ratio method for making absorbed dose calculations in a heterogeneous medium. Radiology 129: 787–794PubMedGoogle Scholar
  9. 9.
    Goitein M (1979) Computed tomography in planning radiation therapy. Int J Radiat Oncol Biol Phys 5: 445–447PubMedCrossRefGoogle Scholar
  10. 10.
    Lichter AS, Fraass BA, van de Geijn J, Fredrickson HA, Glatstein E (1983) An overview of clinical requirements and clinical utility of computed tomography (CT) based radiotherapy treatment planning. In: Ling CC, Rogers CC, Morton RJ (eds) Computed tomography in radiation therapy. Raven, New York, pp 1–21Google Scholar
  11. 11.
    Van Dyk J, Battista JJ, Cunningham JR, Rider WD, Sontag MR (1980) On the impact of CT scanning on radiation planning. Comput Tomogr 4: 55–65PubMedCrossRefGoogle Scholar
  12. 12.
    Glatstein E, Lichter AS, Fraass BA, Kelly BA, van de Geijn (1985) The imaging revolution and radiation oncology: use of CT, ultrasound, and NMR for localization, treatment planning and treatment delivery. Int J Radiat Oncol Biol Phys 11: 299–314PubMedCrossRefGoogle Scholar
  13. 13.
    Ragan DP, Perez CA (1978) Efficacy of CT-assisted two-dimensional treatment planning: analysis of 45 patients. Am J Roentgenol 131: 75–79Google Scholar
  14. 14.
    Goitein M, Wittenberg J, Mendiondo M, Doucette J et al. (1979) The value of CT scanning in radiation therapy treatment planning: a prospective study. Int J Radiat Oncol Biol Phys 5: 1787–1798PubMedGoogle Scholar
  15. 15.
    Lee DJ, Leibel S, Shiels R, Sanders R et al. (1980) The value of ultrasonic imaging and CT scanning in planning the radiotherapy for prostatic carcinoma. Cancer 45: 724–727PubMedCrossRefGoogle Scholar
  16. 16.
    Lee KR, Mansfield CM, Dwyer SJ, Cox HL, Levine E, Templeton AW (1980) CT for intracavitary radiotherapy planning. AJR 135: 809–813PubMedGoogle Scholar
  17. 17.
    McShan DL, Silverman A, Lanza DN, Reinstein LE, Glicksman AS (1979) A computerized three-dimensional treatment planning system utilizing interactive color graphics. Br J Radiol 52: 478–481PubMedCrossRefGoogle Scholar
  18. 18.
    Goitein M, Abrams M, Rowell D, Pollar H, Wiles J (1983) Multidimensional treatment planning II: beam’s-eye-view, back projection and projection through CT sections, Int J Radiat Oncol Biol Phys 9: 789–797PubMedCrossRefGoogle Scholar
  19. 19.
    Goitein M (1982) Limitations of two-dimensional planning programs. Med Phys 9: 580–586PubMedCrossRefGoogle Scholar
  20. 20.
    McShan DL, Fraass BA, TenHaken RK, Jost RJ (1985) Three-dimensional electron beam dose calculations and dosimetric evaluations (abstract) Med Phys 12: 507Google Scholar
  21. 21.
    Wong JW, Henkelman RM (1983) A new approach to CT Pixel-based photon dose calculations in heterogeneous media. Med Phys 10: 199–208PubMedCrossRefGoogle Scholar
  22. 22.
    Order SE, Kopicky J, Leibel SA (1979) Principles of successful treatment planning. Hall, BostonGoogle Scholar
  23. 23.
    Boyer AL, Mok EC (1984) Photobeam modeling using fourier transform techniques. Proceedings 8th international conference on the use of computers in radiation therapy, Toronto, IEEE Computer Society Press, Silver Spring, MD, pp 14–16Google Scholar
  24. 24.
    Siddon RL (1985) Prism representation: a 3D ray-tracing algorithm for radiotherapy applications. Phys Med Biol 30 (8): 817–824PubMedCrossRefGoogle Scholar
  25. 25.
    Chen GTY, Kessler M, Pitluck S (1985) Structure transfer in three dimensional medical imaging studies: Proceedings national computer graphics association meeting. IEEE Computer Society Press, Silver Spring MD, pp 171–177Google Scholar
  26. 26.
    Coffey CW, Hines HC, Wang PC, Smith SL (1984) The early applications and potential usefulness of NMR in radiation therapy treatment planning. Proceedings 8th international conference on the use of computers in radiation therapy, Toronto, IEEE Computer Society Press, Silver Spring, MD, pp 173–180Google Scholar
  27. 27.
    Orton CG, Ellis F (1973) A simplification in the use of the NSD concept in practical radiotherapy. Br J Radiol 46:529–537PubMedCrossRefGoogle Scholar
  28. 28.
    Porter EH (1980) The statistics of dose/cure relationships for irradiated tumors. Br J Radiol 53: 210–227PubMedCrossRefGoogle Scholar
  29. 29.
    Munro TR, Gilbert CW (1961) The relationship between tumors lethal doses and the radiosensitivity of tumor cells. Br J Radiol 34: 246–251PubMedCrossRefGoogle Scholar
  30. 30.
    Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radiol 23: 379–391CrossRefGoogle Scholar
  31. 31.
    Takahashi S (1962) Conformation radiotherapy rotation techniques as applied to radiography and radiotherapy of cancer. Acta Radiol [Suppl] 242: 57–59Google Scholar
  32. 32.
    Mantel J, Perry H, Weinham JJ (1977) Automatic variation of field size and dose rate in rotation therapy. Int J Radiat Oncol Biol Phys 2: 697–704PubMedCrossRefGoogle Scholar
  33. 33.
    Levene MB, Kijewski PK, Chin LM, Bjarngard BE, Hellman S (1978) Computer-controlled radiation therapy. Radiology 129: 769–775PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • A. S. Lichter
  • B. A. Fraass
  • D. L. McShan
  • R. F. Diaz
  • R. K. TenHaken
  • C. Perez-Tamayo
  • K. Weeks

There are no affiliations available

Personalised recommendations